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Abstract

Classic convolutional codes are defined as the convolution of a message
and a transfer function over Z. In this paper, we study time-varying
convolutional codes over a finite group G of the form Z/NZoZ/MZ. The
goal of this study is to design codes with cryptographic properties. To
define a message u of length k over the group G, we choose a subset E
of G that changes at each encoding, and we put u =

∑
i uiE(i). These

subsets E are generated chaotically by a dynamical system, walking from a
starting point (x, y) on a space where each rectangle represent an element
of G. So each iteration of the dynamical system gives an element of
the group which is saved on the current E. The encoding is done by a
convolution product with a transfer function. We have found a criteria
to check if an element in the group algebra can be used as a transfer
function. The decoding process is realized by syndrome decoding. We
have chosen a particular group Z/7Z o Z/3Z to compute the minimum
distance. We found it is slightly smaller than those of the best linear block
codes. Nevertheless, our codes induce a symmetric cryptosystem whose
key is the starting point (x, y) of the dynamical system. Consequently,
these codes are a compromise between error correction and security.

1 Introduction

An error correcting code [8, 7] adds redundancy to a message in order to correct
it when errors occur during transmission. There are two types of codes : block
codes and convolutional codes. The encoding operation of the block codes starts
by dividing the message into several different blocks of same length k. Then
each block is encoded by a mathematical operation whose result is a block of
code word of length n > k.
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The convolutional codes have been discovered by Elias [2] in 1955. The
operation of encoding is the convolution product of the whole message with a
transfer function, both defined over the group of integers Z.

These two types of codes do not protect the message if it is intercepted by
a third party. To protect the message, we use cryptography [5] before error
correcting codes. Without cryptography, in a non-cooperative context, code
recognition [6] is hard but possible.

In this paper, we study convolutional block codes over the non-commutative
group Z/NZ o Z/MZ with a time-varying encoding, in order to design codes
with cryptographic properties.

The principle of encoding is the following. The message U is divided into
blocks u of length k. Each block u is mapped on a subset E = {e0, . . . , ek−1} of
the finite group G. At each encoding, we use a subset E that is different from
the previous. These subsets E are generated chaotically from the key of the
encoding. These chaotic subsets are called encoding intervals. Consequently,
each block u defines an element in the group algebra F2[G] by :

u =

k−1∑
i=0

uiei, ei ∈ E

The transfer function τ defines an element in F2[G] too. The code word c is
the result of the convolution product of u and τ in F2[G]. The bits ci ∈ F2 are
defined as :

c =

n−1∑
i=0

cigi, gi ∈ G

They constitute the code word that is sent on the channel. In the next section,
we will show how to generate some chaotic subsets of length k.

2 Generation of some chaotic subsets of the group

We want to map a message u into the group Z/NZ o Z/MZ such that the
message’s support on the group is different at each encoding. Let Z2 be the
subset of R2 of all points with integer coordinates and let ρ be the reduction
function :

ρ : Z2 → Z/NZ o Z/MZ
(x, y) 7→ (x mod N, y mod M)

Given H = {(Na,Mb), a, b ∈ Z}, we have ρ(x, y) = ρ(x′, y′) if and only if
(x, y)− (x′, y′) ∈ H, then the set Z/NZoZ/MZ is identified with the quotient
Z2/H. Let us recall the definition of a fundamental domain.

Definition 2.1. Given a set E and a group acting on it, the images of a single
point under the group action form an orbit of the action. A fundamental domain
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is a subset of the space which contains exactly one point from each of these orbits.
Otherwise, given a set E and a group G acting on it, we denote by g.x the image
of the point x ∈ E under the action of the element g ∈ G. A subset F of E is
called a fundamental domain for the group action if:

•
⋃

g∈G g(F ) = E

• ∀g, g′ ∈ G such that g 6= g′, g(F ) ∩ g′(F ) = ∅

We compute a fundamental domain of H in the Euclidean plane. The action
of H on the plane sends the point (x, y) to the point (Na + x,Mb + y). The
orbit of the point (0, 0) under the action of H is :

H.(0, 0) = {(0, 0), (N, 0), (0,M), (N,M), . . .}

We extend the action of H on Z2 to R2 and consequently, a fundamental domain
of H is the rectangle

([0, N ]× [0,M ]) \ ([(0,M), (N,M)] ∪ [(N, 0), (N,M)])

with the segments [(0,M), (N,M)] and [(N, 0), (N,M)] that are identified re-
spectively to the segments [(0, 0), (N, 0)] and [(0, 0), (0,M)]. This domain is
represented on the figure 1. By gluing the identified sides pairwise, we obtain a
torus [4].

0 1 2

2

1

(M − 1)

M

NN − 1

Figure 1: Fundamental domain of H

We represent each element of the group Z/NZ o Z/MZ by corresponding
each element (i, j) of the group with the little rectangle [(i, j), (i + 1, j), (i +
1, j + 1), (i, j + 1)] of the torus R2/H. This representation is used to generate

3



sequences of elements of the group in a chaotic order.

To generate these sequences, we use the famous discrete dynamical system
called Arnold’s cat. This dynamical system is chaotic (Theorem 4.8 of [1]) and
usually described on the unit square, so we divide the abscissa by N and the
ordinate by M to have a domain defined on the unit square.

Let be A =

(
1 1
1 2

)
. This matrix is used to define the following automor-

phism φ on the torus T :

φ : T→ T(
x
y

)
7→ A

(
x
y

)
The iterations of this automorphism define a discrete dynamical system. To
generate the encoding intervals, we use the algorithm 1.

We have then some chaotic subsets of the group Z/NZoZ/MZ that we can
used to map the message on the group.

3 Encoding

We first study the problem of transfer functions that should not be right zero
divisors in F2[Z/NZ o Z/MZ].

3.1 Transfer function and injection

To define an error correcting code defined by convolution, each code word must
be the result of one and only one message by convolution, otherwise we can not
decode. So convoluting by the transfer function must be injective. To put it
otherwise, the transfer function must not be a right zero divisor in the algebra
F2[G]. Let us recall the definition of a right zero divisor.

Definition 3.1. Let a be a nonzero element of a ring A. We say that a is a
right zero divisor in A if there exists b 6= 0 ∈ A such that ba = 0

Definition 3.2. Let G a group and τ ∈ F2[G]. The element τ is a transfer
function if τ is not a right zero divisor.

Here we choose an odd N and an odd M so G = Z/NZoZ/MZ has an odd
cardinal which causes that

PGCD(Card(Z/NZ o Z/MZ), car(F2)) = PGCD(NM, 2) = 1

with car(K) the characteristic of the field K. Consequently, we can apply

the Maschke theorem [9], and define the Fourier transform f̂ of any function
f ∈ F2[Z/NZ o Z/MZ].
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Algorithm 1 Generation of encoding intervals of length k on the group Z/NZo
Z/MZ
Require: N , M , NbInterval the number of intervals, (x, y) the starting point,
k the length of the encoding intervals

Ensure: TabInterval the table of intervals
Build a domain associated with Z/NZ× Z/MZ
Initialize a vector InInterval of length N ×M .
NumberElt = 1
while length(TabInterval) < NbInterval do(

x
y

)
= A

(
x
y

)
if x > 1 then
x = x− floor(x)

end if
if y > 1 then
y = y − floor(y)

end if
ft = square(x, y) the number of the square where is (x, y).
if InInterval(ft) == 0 then
InInterval(ft) = NumberElt
NumberElt+ +
if NumberElt == k + 1 then

Initialize a vector Interval of length k.
for j = 1 to N ×M do

if InInterval(j) 6= 0 then
Interval(InInterval(j)) = j

end if
end for
Add Interval to the table TabInterval
NumberElt = 1
Reset InInterval to a vector of length N ×M .

end if
end if

end while
return TabInterval
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Let f, τ be in F2[Z/NZ o Z/MZ], we have the following property :

f̂ ∗ τ = f̂ .τ̂

This property is used to show the following theorem.

Theorem 1. Let f, τ be in F2[Z/NZ o Z/MZ]. Let Ri be the ith linear irre-
ducible representation of Z/NZ o Z/MZ in F2 (the algebraic closure of F2).
If, for all i, τ̂(Ri) is invertible then the application f 7→ f ∗ τ is injective.

Proof. Let τ be in F2[Z/NZ o Z/MZ].

∀i, τ̂(Ri) is invertible⇒ ∀f ∈ FZ/7ZoZ/3Z
2 \{0}, f̂ τ̂ 6= 0

⇒ ∀f ∈ FZ/7ZoZ/3Z
2 \{0}, f̂ ∗ τ 6= 0

⇒ ∀f ∈ FZ/7ZoZ/3Z
2 \{0}, f ∗ τ 6= 0

⇒ f 7→ f ∗ τ is injective

So we have a criteria to determine whether a function τ ∈ F2[Z/NZoZ/MZ]
can be used as a transfer function of a convolutional code.

Remark 3.1. There is another criteria based on the computation of the de-
terminant of the matrix associated to the linear endomorphism induced by the
multiplication-by-τ operation on F2[G]. This criteria tests if τ is invertible in
F2[G] by using the Cayley-Hamilton theorem. However, the criteria based on
Fourier transform is faster to compute, so we prefer to use it.

3.2 Example of encoding over Z/7Z o Z/3Z
We study encoding over the group Z/7ZoZ/3Z because it is the smallest group
of the form Z/NZ o Z/MZ with non-commutative law. Its group law1 is :

∀(a, b), (c, d) ∈ Z/7Z o Z/3Z, (a, b) · (c, d) = (a+ 2bc mod 7, b+ d mod 3)

To each element (i, j) ∈ Z/7ZoZ/3Z, we associate a number such that (i, j) 7→
Mi + j = 3i + j. So we have the following correspondence between numbers
and elements :

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0) (6, 0)
g0 g3 g6 g9 g12 g15 g18

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1) (6, 1)
g1 g4 g7 g10 g13 g16 g19

(0, 2) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2) (6, 2)
g2 g5 g8 g11 g14 g17 g20

1It is an additive law therefore it would be logical to note it +, but as the + sign is used
to represent the elements of the group algebra, we prefer to use · to note the group law.
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Let
u = [1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1]

be a message. Its length is k = 14. Let (x, y) =
(√

2
2 ,

16
√
2

113

)
be an irrational

point of the domain of Z/7Z o Z/3Z. We generate the encoding interval of
length k from (x, y) with the dynamical system. The starting point (x, y) has
the property that 4

7 < x < 5
7 and 0 < y < 1

3 . Consequently, the first element of
E is (4, 0) i.e. g12. The first iteration of the dynamical system gives the second

point (x, y) =
(

145
√
2

226 , 177
√
2

226 − 1
)

. We have 6
7 < x < 1 and 0 < y < 1

3 , so the

second element of E is (6, 0), i.e. g18. After some iterations, we obtain :

E = [(4, 0), (6, 0), (0, 0), (2, 1), (0, 2), (5, 1), (1, 2), (6, 2), (4, 1), (0, 1),

(3, 2), (2, 0), (5, 0), (5, 2)]

= [g12, g18, g0, g7, g2, g16, g5, g20, g13, g1, g11, g6, g15, g17]

The message on the group is then :

u =
∑
i

uiE(i) = (4, 0) + (0, 0) + (1, 2) + (6, 2) + (0, 1) + (3, 2) + (2, 0) + (5, 2)

Let τ be a transfer function such that :

τ = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0]

=

n−1∑
i=0

τigi = g8 + g10 + g11 + g12 + g14 + g15 + g16

= (2, 2) + (3, 1) + (3, 2) + (4, 0) + (4, 2) + (5, 0) + (5, 1)

Consequently, the convolution product between u and τ is :

u ∗ τ = ((4, 0) + (0, 0) + (1, 2) + (6, 2) + (0, 1) + (3, 2) + (2, 0) + (5, 2))

× ((2, 2) + (3, 1) + (3, 2) + (4, 0) + (4, 2) + (5, 0) + (5, 1))

= (4, 0) · (2, 2) + (4, 0) · (3, 1) + (4, 0) · (3, 2) + (4, 0) · (4, 0) + (4, 0) · (4, 2)

+ (4, 0) · (5, 0) + (4, 0) · (5, 1) + ((0, 0) + (1, 2) + (6, 2) + (0, 1) + (3, 2)

+ (2, 0) + (5, 2)) · ((2, 2) + (3, 1) + (3, 2) + (4, 0) + (4, 2) + (5, 0) + (5, 1))

= (4 + 20 × 2 mod 7, 0 + 2 mod 3) + (4 + 20 × 3 mod 7, 0 + 1 mod 3)

+ (4 + 20 × 3 mod 7, 0 + 2 mod 3) + (4, 0) · (4, 0) + (4, 0) · (4, 2)

+ (4, 0) · (5, 0) + (4, 0) · (5, 1) + ((0, 0) + (1, 2) + (6, 2) + (0, 1) + (3, 2)

+ (2, 0) + (5, 2)) · ((2, 2) + (3, 1) + (3, 2) + (4, 0) + (4, 2) + (5, 0) + (5, 1))

= (6, 2) + (0, 1) + (0, 2) + (4, 0) · (4, 0) + (4, 0) · (4, 2) + (4, 0) · (5, 0)

+ (4, 0) · (5, 1) + ((0, 0) + (1, 2) + (6, 2) + (0, 1) + (3, 2) + (2, 0) + (5, 2))

· ((2, 2) + (3, 1) + (3, 2) + (4, 0) + (4, 2) + (5, 0) + (5, 1))

= (0, 2) + (1, 0) + (1, 1) + (3, 0) + (3, 2) + (4, 2) + (5, 1) + (5, 2) + (6, 0) + (6, 2)

= g2 + g3 + g4 + g9 + g11 + g14 + g16 + g17 + g18 + g20

= (0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1)
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So the code word is c = (0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1).

4 Decoding

The convolution product is a linear operation because the convolution product
of two functions in FG

2 correspond to the product of two elements in the group
algebra F2[G]. Consequently, the convolution product over a finite group G
defines linear block codes. Syndrome decoding is usually used to decode linear
codes. We will see the decoding of the previous example by syndrome decoding.

Suppose that the receiver receives the word

r = (0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1)

He knows the encoding interval E and the transfer function used in encoding. He
can compute the generator matrix whose lines are the result of the convolution
of ei ∗ τ , where ei is the function with a 1 on the bit ei ∈ E and 0 otherwise.
He can then compute the parity check matrix H from the systematic generator
matrix. Here he has :

H =



1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1
0 1 0 0 0 1 1 1 1 0 1 1 0 0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 1
0 0 0 1 0 0 1 0 1 0 0 1 1 1 1 0 0 0 1 0 0
0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0


He performs rtH and he obtains the vector (0, 1, 1, 0, 0, 0, 0) corresponding to
the syndrome of an error on the 6th bit. The receiver corrects the value of the
6th bit and obtain c = (0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1), which is
the code word that has been sent. Then, in order to get the message that has
been sent, the receiver performs the convolution product of c and τ−1 2:

u = c ∗ τ−1

= ((0, 2) + (1, 0) + (1, 1) + (3, 0) + (3, 2) + (4, 2) + (5, 1) + (5, 2) + (6, 0) + (6, 2))

· ((0, 2) + (1, 1) + (1, 2) + (2, 0) + (2, 2) + (3, 0) + (3, 1)

+ (3, 2) + (4, 1) + (5, 1) + (6, 1))

= (0, 0) + (0, 1) + (1, 2) + (2, 0) + (3, 2) + (4, 0) + (5, 2) + (6, 2)

= g0 + g1 + g5 + g6 + g11 + g12 + g17 + g20

Then, he identifies the bits ui with the encoding interval E.

E = [g12, g18, g0, g7, g2, g16, g5, g20, g13, g1, g11, g6, g15, g17]
u = [ 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1 ]

2To compute τ−1, we compute the inverse Fourier transform of the vector composed by all
the (τ̂(Ri))

−1.
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5 Properties

5.1 Encoding properties

We test the criteria of theorem 1 to the 221 = 2, 097, 152 functions of FG
2 and

84, 672 functions pass the test (around 4%) and can be considered as transfer
functions. Moreover, we have 221 encoding intervals so we can define 84, 672×221

codes over Z/7ZoZ/3Z. We want to compute the minimum distance of all these
codes but their number is too large. However, we can reduce their number
thanks to the following theorems.

Theorem 2. Let f, τ ∈ FG
2 , g ∈ G and let w be the weight function, i.e.

∀f ∈ FG
2 , w(f) = Card ({x ∈ G | f(x) 6= 0}). We use the natural left action of

G on itself. Then :
w(f ∗ τ) = w(f ∗ (g.τ))

Proof. Firstly, we have :

w(g.f) = Card ({x ∈ G | (g.f)(x) 6= 0})
= Card ({x ∈ G | f(x.g) 6= 0})

The action on the group is only a permutation of the elements so

w(g.f) = w(f)

We have then w(f ∗ τ) = w(g.(f ∗ τ)). Secondly, we have :

(g.(f ∗ τ))(x) = (f ∗ τ)(x.g)

=
∑
t∈G

f(t)τ(t−1xg)

=
∑
t∈G

f(t)(g.τ)(t−1x)

= (f ∗ (g.τ))(x)

Finally, we have w(f ∗ τ) = w(g.(f ∗ τ)) = w(f ∗ (g.τ)).

Similarly, we can proof the following theorem.

Theorem 3. Let f, τ ∈ FG
2 , g ∈ G and let w be the weight function, i.e.

∀f ∈ FG
2 , w(f) = Card ({x ∈ G | f(x) 6= 0}). We use the natural right action

of G on itself.
w(f ∗ τ) = w((f.g) ∗ τ)

We can reduce the number of codes to be tested by taking only the represen-
tatives of the orbits under the left action of G on the sets E and the representa-
tives of orbits under the left action of G on the transfer function τ . So we have
now 4, 032 functions τ and 99, 950 sets E, then 4, 032 × 99, 950 = 402, 998, 400
codes to be tested. We have computed the maximum minimum distance for
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k dmin linear block codes dmin codes over Z/7Z o Z/3Z
2 14 13
3 12 11
4 10 10
5 10 9
6 8 8
7 8 7
8 8 7
9 8 6
10 7 5
11 6 5
12 5 4
13 4 4
14 4 4
15 4 3
16 3 3
17 2 2
18 2 2
19 2 2
20 2 1

Table 1: Comparison of minimum distances of the known linear block codes
with those of the convolutional codes over Z/7Z o Z/3Z

each length k, that we have compared with the minimum distance of the best
linear block codes that we find in [3]. The results are in table 1. We have also
computed the number of sets E which achieve a distance d in table 2.

From these tables, we can see that the maximum minimum distance of codes
over Z/7ZoZ/3Z is smaller for certain k, than the minimum distance of linear
block codes and, is identical for the lengths k equals to 4, 6, 13, 14, 16, 17, 18, 19.
Then, we can see that all the sets E don’t achieve this maximum minimum
distance. To encode, these subsets E will be generated chaotically, so we will
not able to choose ”good” sets. Only the choice of the transfer function will be
important to have a large minimum distance. Consequently, we have computed,
for each transfer function, the average distance for all the sets E of length k. We
obtain some average-optimal transfer functions for each k. The table 3 presents
which average distances these transfer functions achieve.

It can be seen that the optimal average distance is smaller than the minimum
distance of the linear block codes. Nevertheless, we have in addition, some
cryptographic properties we present in the following.

5.2 Cryptographic properties

The protocol of exchange a message with these codes will be the following.
Alice and Bob agree on a secret key, i.e. a point (x, y) on the unit square.
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k number of E achieving a certain distance
2 10 E → d = 13
3 68 E → d = 11
4 217 E → d = 10 and 68 E → d = 9
5 863 E → d = 9 and 106 E → d = 8
6 2596 E → d = 8 and 2 E → d = 7
7 5535 E → d = 7 and 3 E → d = 6
8 106 E → d = 7 and 9584 E → d = 6
9 12261 E → d = 6 and 1759 E → d = 5
10 16796 E → d = 5
11 6204 E → d = 5 and 10592 E → d = 4
12 14020 E → d = 4
13 9097 E → d = 4 and 593 E → d = 3
14 27 E → d = 4 and 5511 E → d = 3
15 2598 E → d = 3
16 710 E → d = 3 and 259 E → d = 2
17 285 E → d = 2
18 68 E → d = 2
19 10 E → d = 2
20 1 E → d = 1

Table 2: Number of E achieving a certain distance over Z/7Z o Z/3Z

They also agree on the other parameters of the codes N , M , k and the transfer
function τ .

Alice computes encoding intervals E as much as necessary to map all the
blocks of k bits that make up her message, with the point (x, y) and the discrete
dynamical system. She computes all the u =

∑
i uiE(i) messages on the chosen

group. She encodes her messages by convoluting them on the group with the
function τ . She deduces the bits of the code words to send to Bob. Then, she
sends all her code words to Bob.

Bob receives the word r, the code word that Alice has sent, with errors dues
to perturbations on the channel. He computes, like Alice, encoding intervals E
as much as necessary. He deduces the parity check matrix of each code. He uses
syndrome decoding to correct errors and finds the code words c sent by Alice.
He computes c ∗ τ−1 for each code word and finds the message u on the group.
Finally, he uses the encoding intervals to find the bits ui of the message.

Imagine now that a third party, Eve, listens to the communication and
intercepts the bit stream. Each code word is the result of the convolution of
a message and a transfer function on G = Z/NZ o Z/MZ, with each message
mapping on a different subset E of G. Each code word have some dependent
bits but the dependence relations are different for each received word. So, if she
uses the rank criteria [6], she sees that all the matrices have full rank, and she
can not deduce the parameters of the code with this method.
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k optimal average distance
2 10,4
3 8,9
4 7,7895
5 7,0268
6 6,0517
7 5,3374
8 4,8088
9 4,3097
10 3.9243
11 3,6456
12 3,1897
13 2,8278
14 2,5845
15 2,1840
16 2
17 2
18 1,9365
19 1,44
20 1

Table 3: Average distance achieving by the average-optimal transfer function τ
for all the sets E of length k

To decode, Eve needs to have the encoding intervals E to compute the parity
check matrix like Bob. These encoding intervals are computed from the point
(x, y) on the unit square. If Eve tries to guess this point and choose a point
(x′, y′) close to the point (x, y), then she obtains some completely different en-
coding intervals E, thanks to the chaotic nature of the dynamic system involved.
Moreover, these chaotic property requires Alice and Bob to have their software
in the same precision.

So Eve needs to know exactly the point (x, y) but it is secret. Without this
point, she can neither correct errors nor get the messages u in binary form.

These properties shows that the point (x, y) is the secret key of a symmetric
cryptosystem.

6 Conclusion

In this paper, we have proposed convolutional blocks over a group of the form
Z/NZ o Z/MZ with odd N,M . We have used a time-varying encoding by
computing some chaotic subset E from a dynamical system on a quotient of Z2.
These subsets have been used to map the message u of length k into the group.
We have found a criteria to check if a element of the group algebra can be used
to a transfer function of the code. We have computed the minimum distance of
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the code defined over the group Z/7Z o Z/3Z to compare it with those of the
best linear block codes. We have found that this distance is identical or slightly
smaller than the distance of the linear block codes. Nevertheless, our codes can
also defined a symmetric cryptosystem whose key is the starting point (x, y) of
the dynamical system. Consequently, these convolutional block codes over the
group Z/NZ o Z/MZ are a compromise between error correction and security.
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