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Abstract

We show that there is a large class of nonspecial effective divisors
of relatively small degree on real algebraic curves having many real
components i.e. on M-curves. We apply to

1. complete linear systems on M-curves containing divisors with
entirely real support, and

2. morphisms of M-curves into P
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1 INTRODUCTION

One of the subjects in real algebraic geometry that enjoys considerable atten-
tion is the study of the topology of real algebraic plane curves. This study is
part of Hilbert’s 16th problem and, ever since, quite some progress has been
made (see [1] and its references on the subject). Particular interest has been
devoted to the case of plane curves having many real components.

Concerning the study of real algebraic plane curves, it is natural to study
separately the real algebraic curve and its embedding into the projective
plane. Since such an embedding is completely determined by its linear sys-
tem, the first part of Hilbert’s 16th problem may be interpreted as the prob-
lem of studying the topology of linear systems on real algebraic curves.

In this paper, we study linear systems on real algebraic curves that have
many real components i.e. on M-curves. We find a large class of nonspecial
effective divisors of relatively small degree on such curves. We apply to



1. complete linear systems on M-curves containing divisors with entirely
real support, and

2. morphisms of M-curves into PL.

In particular, we answer for M-curves a question of C. Scheiderer.

Convention and notation. A real algebraic curve is a geometrically in-
tegral nonsingular proper scheme over R of dimension 1. The projective line
P4 over R is simply denoted by P!

2 NONSPECIAL EFFECTIVE DIVISORS ON M-CURVES

Let C be a real algebraic curve. A real component of C' is a connected
component of the set C'(R) of real points of C. Let f be a nonconstant
rational function on C. Let P be a closed point of C' at which f has a pole.
We say that the pole P of f is real if its residue field k(P) is equal to R.

The following statement is the key lemma of the paper. Its proof is so
elementary that one may suspect that the statement is well known. Never-
theless, I was not able to find a reference in the literature.

Lemma 2.1. Let C be a real algebraic curve. Let f be a nonconstant rational
function on C' having only real poles. Suppose that every real component of C
contains at most one pole of f, counted with multiplicity. Then, every real
component of C contains exactly one pole of f.

Proof. Let d be the degree of f considered as a morphism from C into P!,
i.e. d = deg(f*oo). Since all the poles of f are real and since each real
component of C' contains at most one pole of f, there are exactly d real
components Xi,..., X, of C at which f has a pole. The restriction of f to
a real component X; is a continuous map from X; into P'(R) of degree 1
(mod 2) (see [6] for definition and properties of the topological degree). In
particular, f maps X; onto P}(R) for s = 1,...,d. Since d = deg(f),



Therefore, for each real component X of C there is ¢ € {1,...,d} such that
X = X;. In particular, every real component of C' contains exactly one pole

of f. O
The following consequence is merely a reformulation of Lemma 2.1:

Corollary 2.2. Let C be a real algebraic curve. Let s be the number of real

components of C'. Let k < s be a natural integer and let Py, ..., Py be real
points of C' such that no two of them belong to the same real component of C'.
Let D be the divisor Y1 P;. Then, h°(D) = 1. O

Lemma 2.1, or rather its above corollary, provides yet another proof of
Harnack’s Inequality for real algebraic curves [4]:

Corollary 2.3. (Harnack’s Inequality) Let C be a real algebraic curve.
Let g be the genus of C and let s be the number of real components of C'.
Then, s < g+ 1.

Proof. Suppose that s > g+ 1. Then there is an effective divisor D on C
of degree k = g + 1 as in Corollary 2.2. By Riemann’s Inequality, h°(D) >
deg(D) — g+ 1 = 2 which contradicts the conclusion of Corollary 2.2. O

A real algebraic curve C' of genus ¢ is said to have many real components if
the number of real components of C' is equal to g+ 1; for short, (' is called an
M -curve. One easily convinces oneself of the existence of such curves in any
genus. In fact, there are many M-curves of given genus: the moduli space of
M-curves of genus g is a connected semianalytic variety of dimension 3g — 3,
if g > 118, 5].

Recall that a divisor D on an algebraic curve C' is said to be nonspecial
if R°(D) = deg(D) — g+ 1, where g is the genus of C'. By Riemann-Roch, D
is nonspecial if and only if h°( K" — D) = 0, where K is a canonical divisor
on C. It follows that D is nonspecial if D’ is nonspecial and D > D’. Recall
also that divisors of degree at least 2¢g — 1 are nonspecial.

Using Corollary 2.2, one gets a large class of nonspecial effective divisors
of relatively small degree on M-curves:

Theorem 2.4. Let C' be an M-curve of genus g. Let D be an effective
divisor on C such that Supp(D) N X # 0 for at least g real components X
of C. Then, D s nonspecial.

Proof. Choose g points Py,..., P, € Supp(D) N C(R) such that no two of
them belong to the same real component of C. Put D' = > P;,. By Corol-
lary 2.2, h°(D') = 1 = deg(D') — g + 1. Hence, D' is nonspecial. Since
D > D', D is nonspecial as well. O



It is well known that a generic effective divisor of degree at least ¢ is
nonspecial. The point of Theorem 2.4 is that it states that all divisors
satisfying the explicit conditions of the statement are nonspecial.

In the following sections we discuss some applications of Theorem 2.4.

3 MORPHISM INTO P!

In this section we use Theorem 2.4 in order to study morphisms of M-curves
into P!, We start of with the following consequence of Theorem 2.4:

Corollary 3.1. Let C be an M-curve and let g be its genus. Let D be an
effective divisor on C such that Supp(D) N X # O for all real components X
of C. Then, the linear system |D| is base point-free. O

Let C be a real algebraic curve and let Div(C') denote the group of divisors
on C. Let X be areal component of C and let resx : Div(C') — Div(C) be the
restriction-to- X morphism. This morphism is defined by letting resx (P) = P
if P € X and resx(P) =0 if P ¢ X, for any closed point P of C. For any
divisor D on C, we define the degree of D on X to be the natural number
degx (D) = deg(resx (D)).

Let €' be an M-curve and let ¢ be its genus. Let D be an effective divisor
on C of degree g + 1 such that degy (D) = 1 for all real components of C.
According to Theorem 2.4, h°(D) = 2, i.e., the linear system |D| on C' is 1-
dimensional. By Corollary 3.1, | D| is base point-free. Let then f: C' — P! be
the morphism associated to D. The following result states some remarkable
properties of f.

Proposition 3.2. 1. The morphism f: C — P! is of degree g + 1.

2. The restriction of f to any real component of C' is a homeomorphism

onto P1(R).
3. For any real point Q of P, the fiber f~1(Q) is contained in C'(R).
4. The morphism f is unramified over each real point of PL.

5. The restriction of f to any real component of C' is an analytic isomor-
phism onto PY(R).

Proof. Since |D| is base point-free, the degree of f is equal to the degree
of D, i.e.,deg(f) = g+ 1. This proves Statement 1.

In order to show Statement 2, we show first that the restriction f|x: X —
PY(R) of f to any real component X of C is surjective. Indeed, since



deg (D) = 1, the topological degree of f|x is equal to 1 (mod 2). Therefore,
f

x 1s surjective.

We show simultaneously the injectivity of f|x and Statements 3 and 4:
Let @ be a real point of PL. Since f|x is surjective for any real component X
of (', the restriction of f*() to any real component of ' is a nonzero effective
divisor. Then

g+1=deg(f*Q) > Y degx(f*Q) > g+1.
X

Hence the two inequalities are, in fact, equalities. The first of these equalities
shows that f*Q has support contained in C'(R). In particular, f~*(Q) is
contained in C'(R), whence Statement 3. The second of the two equalities
shows that the degree of f*() on each real component of C is equal to 1.
It follows that the restriction of f to any real component of ' is injective,
whence Statement 2. It also follows that each point of the support of f*@)
appears with multiplicity 1 in f*(), whence Statement 4.

Statement 5 follows from Statements 2 and 4. 0

We conclude this section with a characterization of M-curves in terms of
morphisms into P!

Proposition 3.3. Let C' be a real algebraic curve and let g be its genus.
Then C is an M-curve if and only if there is a morphism f: C — P! satis-
fying the following 3 conditions.

1. The morphism f is of degree g + 1.

2. The restriction of f to any real component of C is a homeomorphism

onto PY(R).
3. Any closed point P € C such that f(P) € PYR) is real.

Moreover, in that case, there is an effective divisor D on C of degree g + 1
with degx (D) =1 for all real components X of C such that f is the morphism
assoctated to D.

Proof. Tt follows from Proposition 3.2 that the 3 conditions are necessary. In
order to show that they are sufficient, assume that C' is a real algebraic curve
and that f: C' — P! is a morphism satisfying Conditions 1, 2 and 3. Let s
be the number of real components of C'. Choose a point € P!(R) such
that f is unramified over (). Then, by Conditions 2 and 3, the divisor f*@)

is of degree s. By Condition 1, s = g+ 1.



In order to prove the last statement, observe that the effective divisor
D = f*oo is of degree g + 1, by Condition 1, and satisfies degx(D) > 1
for all real components X of ', by Condition 2. Since (' has ¢ + 1 real
components, degy (D) = 1 for all real components X of C'. This shows the
last statement of the proposition. O

4  DIVISORS WITH REAL SUPPORT

Let C be an M-curve and let g be its genus. Let Pic(C) denote the Picard
group of linear equivalence classes of divisors on (. Denote by cl the mor-
phism from Div(C') into Pic(C') that associates to a divisor its class. For
an integer d, denote by Div?(C') the subset of Div(C') consisting of divisors
of degree d and let Pic?(C') be the cl-image of Div¥(C). Recall [3, 2] that
Pic?(C) is a compact commutative real Lie group of dimension g. Its group
of connected components is isomorphic to (Z/27Z)?. The neutral component
of Pic’(C) is isomorphic to the real Lie group (S')?. Moreover, Pic?(C) is
a principal homogeneous space under the action of Pic’(C'). In particular,
Pic?(C') is a compact real analytic manifold of dimension g having 29 con-
nected components. Each of its connected components is real analytically
isomorphic to the real analytic manifold (5)9.

Theorem 4.1. Let C be an M-curve of genus g. Let Xy,..., X, be distinct
real components of C and let X = [[ X;. Define

o: X — Pic?(C)

by letting o(Py, ..., P,) be the divisor class cl(> P;). Then, the map o is a
real analytic isomorphism onto a connected component of Pic?(C).

Proof. Let C'¥) denote the g-fold symmetric product of C. Since the real
components X,. .., X, are distinct, the natural map from X into C¥(R)is
a real analytic isomorphism from X onto a connected component of C9)(R),
Identify X with this connected component. Then, ¢ extends to a morphism
of real algebraic varieties, again denoted by o, from C into Picl,. Here,
Picl, denotes the degree-g part of the Picard scheme Pice of C. The real
analytic manifold Pic?(C') is equal to the set of real points of Picl.. Tt is
well known that ¢ is a birational morphism. In fact, let U C C be the
subset of nonspecial divisors. Then, U and o(U) are open and nonempty,
and o is an isomorphism of U onto o(U). By Theorem 2.4, X is entirely
contained in U. In particular, X is a connected component of U(R). Then,
o(X) is connected component of o(U)(R) and the restriction of o to X is a
real analytic isomorphism onto the connected component o(X) of o(U)(R).
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Since X is compact, o(X) is compact and is, therefore, also a connected
component of Pic?(C). O

Since the proof of Theorem 4.1 does not use the fact that the connected
components of Pic?(C') are real analytically isomorphic to (S*)?, it provides
another proof of this fact.

Theorem 4.1 allows to answer for M-curves the following problem for-
mulated by Scheiderer [7, §2]: Given a real algebraic curve C' of genus ¢
with C'(R) # (), determine explicitly an integer n with the following prop-
erty. For every complete linear system | D| with deg(D) > n thereis D' € |D)|
such that Supp(D’) consists of real points only. Indeed, if C'is an M-curve,
the following statement claims that one can take n =2g — 1 if g > 0.

Theorem 4.2. Let C be an M-curve of genus g > 0. Let d be a natural
integer and let Divi2%(C') be the subset of Divi(C') of effective divisors having

entirely real support. If d > 2g — 1 then
A(DivE20(C)) = Pic(C).

Proof. Denote the real components of C' by X, ..., X,. It is well known that
if D and D' are linearly equivalent divisors on C then degy (D) = degy(D')
mod 2 for all real components X of C (see [3, Lemma 4.1]). Tt follows that

0(D) = (deg(D),degx, (D), .. ,deng(D))

defines a morphism ¢ from Pic(C') into Z & (Z/‘ZZ)9+1. The kernel of § is
the neutral component of Pic(C'). Therefore, the image of § is the group of
connected components of Pic(C'). It is clear that

im(0) ={(z,z0,... ,2,) |z = Z‘Tﬁ mod 2}.

We denote by z,zg,...,z, the coordinates on Z & (Z/2Z)**'. For i =
0,...,9, let e; € im(d) be defined by z(e;) = g, x;(e;) = 0, and z;(e;) = 1
for j # 1, i.e.,

ei=(g,1,1,...,1,0,1,...,1,1)

where the entry 0 is at the (i 4+ 2)-nd place. By Theorem 4.1, the connected
component 6! (e;) is contained in the cl-image of Div%2%(C), fori = 0,... , g.

Now, it clearly suffices to show the statement for d = 2g — 1. Choose a
connected component of Pic**~!((). Such a connected component is of the
form 6~ '(e) for some e € im(d). One has z(e) = 29 — 1. We show that there
is an effective divisor D on C' of degree g — 1 with real support such that the
translation-by-cl(D) map on Pic(C') maps a connected component of Pic(C')
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of the form §!(e;) onto §7'(e). Since 67(e;) is contained in cl(Divfs’ZO(C)),
it will imply that §=1(e) is contained in the cl-image of Div29~12°(().

There are two cases to consider:

First case: all coordinates x;(e) are nonzero. Since e € im(d), one has
20— 1 =g+ 1 mod 2, i.e., g is even. Let P be any real point contained
in Xg. Let D be the divisor (¢ —1)P. Let 7 be the translation-by-cl(D) map
on Pic(C). Since g — 1 is odd, 7(67 (eg)) = 7!(e). Since D is an effective
divisor with real support, it follows that §7!(e) is contained in the cl-image
of DivZ~120((),

Second case: there is an integer ¢ such that z;(e¢) = 0. Since 2g — 1 is
odd, there is an integer 7 such that z;(e) = 1. For any integer k& such that

zi(e) # xi(e;), choose a point Py € Xj. Let

D= Y P
zr(e)#zx(ei)
Since x;(e¢) = 0 = x;(e;) and zj(e) = 1 = z;(e;), the degree of D' is at
most ¢ — 1. Moreover,

g
deg(D') =) zi(e) —ap(e) = (29— 1) —g=g—1 mod?2.

k=0
Therefore, there is a nonnegative integer ¢ such that deg(D') 4+ 2( = g — 1.
Choose a point P; € X; and let D = D' + 2{P;. Let 7 be the translation-
by-cl(D) map on Pic(C'). Then, 7(671(e;)) = 6~1(e). Since D is an effective
divisor with real support, it follows again that ¢~!(e) is contained in the
cl-image of DivZ~12((). O

rs

One may wonder whether the sufficient condition d > 2g — 1 in Theo-
rem 4.2 is also necessary. It is tempting to suspect that it is, i.e., that

(DivZ9=229(C)) C Pic*~2(C).
One may also wonder whether the conclusion of Theorem 4.2 holds for any

real algebraic curve C of genus g > 0 with C'(R) # ().
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