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Abstract

Let X be a real hyperelliptic curve. Its opposite curve X
− is the

curve obtained from X by twisting the real structure on X by the
hyperelliptic involution. The curve X is said to be Gaussian if X

− is
isomorphic to X. In an earlier paper, we have studied Gaussian curves
having real points [4]. In the present paper we study Gaussian curves
without real points, i.e. anisotropic Gaussian curves. We prove that
the moduli space of such curves is a reducible connected real analytic
subset of the moduli space of all anisotropic hyperelliptic curves, and
determine its irreducible components.
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1 Introduction

Let X be a real hyperelliptic curve. Its opposite curve is the curve obtained
from X by twisting the real structure on X by the hyperelliptic involution.
The opposite curve of X is denoted by X−. The curve X is said to be
Gaussian if X− is isomorphic to X [4]. The terminology is inspired by the
fact that such a curve carries a complex automorphism α whose complex
conjugate is equal to [−1]◦α, where [−1] denotes the hyperelliptic involution.
As explained in the introduction of [4], Gaussian curves arise naturally when
one studies the real Schottky problem [6].

In an earlier paper, we have studied Gaussian curves having real points [4].
Their study relies heavily on the fact that they are ramified double coverings
of the ordinary real projective line. In the present paper we study Gaussian
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curves without real points. Such curves are ramified double coverings of the
anisotropic conic given by the equation x2 +y2+z2 = 0, in the real projective
plane (Lemma 3.1). Their study, therefore, needs entirely different methods.

Now, in another paper, we studied general ramified double coverings of
the anisotropic conic, i.e., anisotropic hyperelliptic curves, or anisotropic
curves, for short [5]. We developed a method to study anisotropic curves
through so-called bordered line arrangements. This method will allow us
here to study anisotropic Gaussian curves. More precisely, we will derive a
characterization of anisotropic Gaussian curves in terms of bordered line ar-
rangements (Theorem 3.2). This characterization leads to a parametrization
of the moduli space of anisotropic Gaussian curves by a space of bordered
line arrangements.

More explicitly, we obtain the following result. Denote by Gg the moduli
space of anisotropic Gaussian curves of genus g, where g is a natural integer ≥
2. Denote by Hg the moduli space of all anisotropic curves of genus g. Recall
that Hg has a natural structure of a semianalytic variety [4]. The variety Hg

is connected irreducible and of dimension 2g − 1.

Theorem 1.1. Let g be a natural integer satisfying g ≥ 2. The subset Gg

of Hg is a connected real analytic subset of the semianalytic variety Hg.
Furthermore, the following statements hold.

1. If g + 1 is a power of 2 then the number of irreducible components
of Gg is equal to 1

2
(g + 1). Moreover, the dimension of each irreducible

component is equal to g − 1.

2. If g is odd and g+ 1 is not a power of 2 then the number of irreducible
components of Gg is equal to 1

2
(g + 1) + 1

2
(h+ 1), where h is the great-

est odd divisor of g + 1. Moreover, the dimension of each irreducible
component is either equal to g − 1 or to h− 1.

3. If g is even then Gg is empty.

In fact, we have a much more precise statement (Theorem 6.3), but since
it is rather technical, we postpone it to Section 6.

The paper is organized as follows. After recalling some facts about
anisotropic curves and bordered line arrangements, we give a characteri-
zation of Gaussian curves, in Sections 2 and 3. Sections 4 and 5 constitute
the core of the paper. There, we study the moduli space of bordered line
arrangements associated to anisotropic Gaussian curves. In Section 6 we de-
rive our main results on anisotropic Gaussian curves. Finally, in Section 7,
we apply our results, and describe all Gaussian anisotropic curves of genus 3.
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2 Anisotropic real curves

A smooth projective real algebraic curve X of genus g ≥ 2 is said to be
hyperelliptic if the image of the canonical morphism k : X → Pg−1 is a rational
curve. Now, there are, up to isomorphism, exactly 2 rational curves: the real
projective line P1 and the anisotropic conic S1. The latter curve is the real
algebraic curve defined by the equation x2 + y2 + z2 = 0 in P2. A real
hyperelliptic curve X is said to be isotropic if k(X) is isomorphic to P1,
and anisotropic if k(X) is isomorphic to S1. It is clear that an anisotropic
curve has no real points, and well known that such a curve has odd genus [3,
Proposition 6.1].

In order to study anisotropic curves, it is useful to have at one’s disposal
the notion of bordered line arrangements. A real line arrangement is a re-
duced real algebraic curve in P2 all of whose irreducible components are real
projective lines. More explicitly, a real line arrangement in P2 is the union of
finitely many distinct real projective lines in P2. A bordered line arrangement
is a pair (A,O), where A is a real line arrangement and O is a closed subset
of P2(R) whose boundary ∂O is equal to A(R). The degree of a bordered line
arrangement (A,O) is the degree of A, i.e. the number of lines that A con-
tains. It is not difficult to see that the degree of a bordered line arrangement
is even [5, Proposition 5.1].

Let p be a nonzero homogeneous real polynomial in x, y, z such that p =
∏d

i=1 Li, where L1, . . . , Ld are real linear forms in x, y, z and Li is not a
multiple of Lj, whenever i 6= j. If d is even then p defines a bordered line
arrangement of degree d. Indeed, let A be the vanishing set of p and let O
be the set of real points of P2 where p is nonnegative. Since d is even, the
latter subset is a well-defined subset of P2(R). It is clear that (A,O) is a
bordered line arrangement. In fact, it is not hard to see that each bordered
line arrangement arises in this way. Moreover, two polynomials p and q as
above define the same bordered line arrangement if and only if there is a
positive real number λ such that p = λq.

It will be convenient to have a notation for the set of the homogeneous
polynomials p as above. Let R[x, y, z]1d denote the set of all nonzero homoge-

neous real polynomials p of degree d in x, y, z such that p =
∏d

i=1 Li, where
L1, . . . , Ld are real linear forms in x, y, z, and Li is not a multiple of Lj,
whenever i 6= j.

Let g be an odd natural integer ≥ 2. A homogeneous polynomial p ∈
R[x, y, z]1g+1 not only defines a bordered line arrangement, but also an aniso-
tropic curve. Indeed, let X be the normalization of the curve in P3 defined
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by the equations

x2 + y2 + z2 = 0 and w2zd−2 = p(x, y, z).

Then X is an anisotropic curve of genus g [3, Proposition 6.2]. In fact, for
any anisotropic curve X of genus g there is a homogeneous polynomial p ∈
R[x, y, z]1g+1 such that the anisotropic curve associated to p is isomorphic
to X. Moreover, two homogeneous polynomials p, q ∈ R[x, y, z]1g+1 give rise
to isomorphic anisotropic curves if and only if there are β ∈ SO3(R) and
λ ∈ R+ such that β?p = λq [5, Corollary 7.3]. Here β?p denotes the natural
action of the special orthogonal group SO3(R) on R[x, y, z]1g+1.

Now, if we put the two constructions together, one has a map from the
set of bordered line arrangements into the set of isomorphism classes of
anisotropic curves. Indeed, let (A,O) be a bordered line arrangement of
degree g + 1. Then, there is a p ∈ R[x, y, z]1g+1 such that A is the vanishing
set of p, and O is the set of real points of P2 on which p is nonnegative.
The anisotropic curve X associated to (A,O) is the anisotropic curve X as-
sociated to p above. By what has been said above, any anisotropic curve is
isomorphic to a curve associated to a bordered line arrangement.

Recall that an isometry of P2 is an element of the projective special
orthogonal group PSO3(R), which is the image, in PGL3(R), of the special
orthogonal group SO3(R). The group PSO3(R) acts on the set of bordered
line arrangement if one defines β · (A,O) = (β(A), β(O)).

The following statement has been proved in [5, Corollary 7.2], and will
be useful in the sequel of the paper.

Theorem 2.1. Let (A,O) and (A′, O′), be bordered line arrangements in P2.
Let X and X ′ be the anisotropic curves associated to (A,O) and (A′, O′),
respectively. Then the following conditions are equivalent.

1. The anisotropic curves X and X ′ are isomorphic.

2. There is a β ∈ PSO3(R) such that β · (A,O) = (A′, O′).

3 Anisotropic Gaussian curves

Let X be a real hyperelliptic curve. Let [−1] be the hyperelliptic involution
on X. Let G = {1, σ} be the Galois group Gal(C/R), acting naturally on
the complexification XC = X ×R C of X. Let AutR(XC) be the group of R-
automorphism of the scheme XC. Then, the action of G induces a morphism
of groups ϕ : G→ AutR(XC).

One can twist the ϕ-action of G on XC by defining a morphism ψ : G→
AutR(XC) by ψ(σ) = [−1] ◦ ϕ(σ). The morphism ψ defines another action
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of G on XC. The quotient of XC by the ψ-action of G is a real algebraic
curve X−, which is said to be obtained from X by twisting the real structure.
The curve X− is called the opposite curve of X.

The real curves X and X− are not isomorphic, in general. When they
are isomorphic, X is said to be a Gaussian curve.

Lemma 3.1. Let X be a Gaussian curve without real points. Then, X is an
anisotropic curve. In particular, the genus of X is an odd natural integer.

Proof. Let X be a Gaussian curve without real points. In order to show that
X is anisotropic, suppose, to the contrary, that X is isotropic. Then the
image k(X) of the canonical morphism k : X → Pg−1 is isomorphic to the
real projective line P1. Identify k(X) with P1, and consider k as a morphism
from X into P1. Since k is a morphism of degree 2, there is a real polyno-
mial p ∈ R[x] such that X is the smooth projective model of the affine plane
curve defined by the equation y2 = p(x). Since X has no real points, the
polynomial p is strictly negative on R. The curve X− obtained by twisting
the real structure on X, as defined above, is the smooth projective model of
the affine plane curve defined by the equation y2 = −p(x). In particular, X−

does have real points. Hence, X− is not isomorphic to X. Contradiction,
since X is Gaussian. It follows that X is anisotropic. In particular, the genus
of X is an odd integer [3, Proposition 6.1].

For the statement of the main result of this section, we need to introduce
some further terminology. Let (A,O) be a bordered line arrangement. The
opposite bordered line arrangement is (A,O−), where O− is the closure of
the complement P2(R) \ O of O in P2(R). Let X be the anisotropic curve
associated to (A,O). It follows from the definition of the anisotropic curve
associated to a bordered line arrangement (see Section 2), that the anisotropic
curve associated to the opposite bordered line arrangement (A,O−) is the
opposite curve X−.

Let β ∈ PSO3(R) be a nontrivial isometry. The center of β is the unique
point Cβ ∈ P2(R) that is fixed by β and that is not contained in any line
of fixed points of β. The line at infinity of β is the unique real projective
line Lβ of P2 which is stable under the action of β and which does not pass
through Cβ.

More explicitly, there is an orthonormal basis v1, v2, v3 of R3 with respect
to which the matrix of β is equal to





cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1



 ,
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for some real number θ. Then, the center Cβ of β is the point [v3] of P2(R).
The line at infinity Lβ of β is the real projective line in P2 passing through
[v1] and [v2].

Note that β is necessarily of finite order in PSO3(R) if there is a line
arrangement A of degree ≥ 2 such that β(A) = A. We will use this fact
tacitly throughout the rest of the paper.

Theorem 3.2. Let g be an odd integer ≥ 2. Let (A,O) be a bordered line
arrangement of degree g+1, and let X be the associated anisotropic curve of
genus g. Then the following conditions are equivalent.

1. X is a Gaussian curve.

2. There is an α ∈ Aut(XC) such that α = [−1]◦α, where α is the complex
conjugate automorphism of α, and [−1] is the hyperelliptic involution
on the complexification XC of X.

3. There is a β ∈ PSO3(R) such that

(a) β(A) = A, and

(b) β(O) = O−.

4. There is a β ∈ PSO3(R) such that

(a) β(A) = A,

(b) n divides 2`, where n is the order of β and ` is the number of lines
of A through Cβ, and

(c) 2`
n

is odd.

5. There is a β ∈ PSO3(R) such that

(a) β(A) = A,

(b) the order n of β is even, and

(c) either Lβ is a line of A, or n does not divide g + 1.

Proof. 1 ⇔ 2: This has already been shown for isotropic Gaussian curves [4].
The proof for anisotropic Gaussian curve is similar.

1 ⇔ 3: Since X is associated to the bordered line arrangement (A,O), the
curve X− is associated to the bordered line arrangement (A,O−), as observed
above. By Theorem 2.1, X is Gaussian if and only if there is β ∈ PSO3(R)
such that β(A) = A and β(O) = O−.

3 ⇔ 4: Suppose that there is a β ∈ PSO3(R) such that β(A) = A. We
have to show that β(O) = O− if and only if n divides 2` with odd quotient.
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Since SO3(R) = PSO3(R), we consider β as an element of SO3(R), whenever
it is convenient. Let p ∈ R[x, y, z]1g+1 be such that A is equal to the vanishing
set of p and such that O is the set of real points of P2 where p is nonnegative.
It is clear that β(O) = O− if and only if β?p = −p.

Observe that the order n of β is even, if β(O) = O−, or if n divides 2`
with odd quotient. Since we want to show the equivalence of the last two
conditions, we may as well suppose that n is even. Observe also that βn/2 acts
trivially on the set of real projective lines through Cβ, and that an orbit of a
real projective line through Cβ under the action of the subgroup generated
by β contains exactly n/2 elements. It follows that n/2 divides `, i.e., n
divides 2`.

Since the number of lines of A passing through Cβ is equal to `, there are
nonzero real linear forms L1, . . . , L` in x, y, z such that

p = p′ ·
∏̀

i=1

Li,

where p′ ∈ R[x, y, z]1g+1−` does not vanish at Cβ. Since β(A) = A, one may
assume, after renumbering if necessary, that

∏̀

i=1

Li =

`/(n/2)
∏

i=1





n/2−1
∏

j=0

(βj)?Li





It is clear that β?p′ = p′. Since (βn/2)?Li = −Li, it follows that β?p = −p
if and only if `/(n/2) is odd. This proves that β(O) = O− if and only if n
divides 2` with odd quotient.

4 ⇔ 5: Let β ∈ PSO3(R) such that β(A) = A. Let n be the order
of β. Since both conditions 4 and 5 imply that n is even, we may assume
that n is even. The action of the subgroup 〈β〉 generated by β on the set
of real projective lines in P2 has 3 types of orbits: the orbit {Lβ} of Lβ, the
orbit of a line through Cβ and the orbit of a line different from the preceding
ones. The latter orbit has cardinality n. The orbit of a line through Cβ

has cardinality n
2
. When one restricts the action of 〈β〉 to the set of lines

contained in A, one gets the orbit formula

g + 1 = ε+ k n
2

+mn,

where k is the number of orbits contained in A of lines through Cβ, m is the
number of orbits contained in A of lines different from Lβ and not passing
through Cβ, and ε = 1 or 0 according to whether or not Lβ belongs to A.
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Since the number of lines of A through Cβ is equal to `, one has ` = k n
2
. In

particular, n divides 2`.
In order to show the equivalence between 4 and 5, we need to show that

k = 2`/n is odd if and only if ε = 1 or n does not divide g + 1. If k is
odd then n does not divide g + 1 − ε, as follows from the above equation.
Hence, ε = 1 or n does not divide g + 1. Conversely, if ε = 1 or n does not
divide g + 1, then n does not divide g + 1 − ε, since n is even and g is odd.
It follows from the above equation that k is odd.

Remark 3.3. Condition 2 has been added for completeness. It is the condition
that suggested the terminology “Gaussian curve” in [4].

As a corollary of Theorem 3.2, one gets that a Gaussian anisotropic curve
is determined, up to isomorphism, by the associated line arrangement A, or
equivalently, by the ramification locus in S1 of the associated ramified double
covering of S1.

Corollary 3.4. Let (A,O) and (A′, O′) be bordered line arrangements of
degree ≥ 3. Let X and X ′ be the anisotropic curves associated to (A,O) and
(A′, O′), respectively. Let B and B ′ be the ramification loci in S1 of the
double coverings X → S1 and X ′ → S1, respectively. If X is Gaussian then
the following conditions are equivalent.

1. The curves X and X ′ are isomorphic.

2. There is a β ∈ Aut(S1) such that β(B) = B ′.

3. There is a β ∈ PSO3(R) such that β(A) = A′.

Proof. 1 ⇒ 2: Let f : X → X ′ be an isomorphism. Then, f induces an
automorphism β of S1 such that β(B) = B′.

2 ⇒ 3: Let β be an automorphism of S1 such that β(B) = B′. Since S1

is a rational normal curve in P2, the automorphism group of S1 is equal
to PSO3(R). It follows that β ∈ PSO3(R), and that β(A) = A′.

3 ⇒ 1: Let β ∈ PSO3(R) such that β(A) = A′. One has either β(O) =
O′ or β(O−) = O′. If β(O) = O′ then X and X ′ are isomorphic by Theo-
rem 2.1. If β(O−) = O′ then there is a γ ∈ PSO3(R) such that γ(A) = A and
γ(O) = O−, by Theorem 3.2. It follows that β ◦γ(A) = A and β ◦γ(O) = O′.
One concludes again by Theorem 2.1 that X and X ′ are isomorphic.

4 The space of Gaussian bordered line arrangements

Let d be a natural integer. Let Ãd denote the set of bordered line arrange-
ments of degree d. The elements of Ãd are pairs (A,O), where A is a real
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line arrangement in P2, and O is a closed subset of P2(R) whose boundary is
equal to A(R). Recall from [5] that Ãd is nonempty if and only if d is even
and nonzero. Moreover, if d is even and nonzero then Ãd is a connected real
analytic manifold of dimension 2d.

Let B̃d denote the set of all triples (A,O, β), where (A,O) is a bordered
real line arrangement in P2 of degree d and β is an isometry of P2 such
that β(A) = A and β(O) = O−. Bordered line arrangements (A,O) for
which such an isometry exists give rise to anisotropic Gaussian curves, as
follows from Theorem 3.2. The object of this section is to study B̃d and its
connected components.

Let n be a natural integer, and let B̃n
d be the subset of B̃d of all triples

(A,O, β) such that the order of β is equal to n. In order to study B̃n
d , we

need to recall some classical facts about elements of PSO3(R) that are of
finite order.

Let PSO3(R)[n] denote the subset of PSO3(R) of all elements of order n.
It is clear that PSO3(R)[n] is a compact real analytic subvariety of PSO3(R).
The group PSO3(R) acts on PSO3(R)[n] by conjugation. The orbits for this
action are easily seen to be open. Moreover, they are connected and closed
since PSO3(R) is connected and compact. Therefore, the action is transitive
on each connected component of PSO3(R)[n]. It follows that PSO3(R)[n] is
a smooth closed real analytic subvariety of PSO3(R), i.e., it is a closed real
analytic submanifold of PSO3(R).

Suppose that n ≥ 2, and let

C : PSO3(R)[n] −→ P2(R)

be the map that associates to β its center Cβ. It is clear that C is a surjective
real analytic map. It is also clear that its fibers are finite and of cardinal-
ity ϕ(n), where ϕ denotes Euler’s totient function. If γ ∈ PSO3(R) and β ∈
PSO3(R)[n], then the center of γβγ−1 is γ(Cβ). This means that the map C is
equivariant with respect to the actions of PSO3(R) on PSO3(R)[n] and P2(R).
It follows that C is a local real analytic isomorphism. Since ϕ(2) = 1, the
map C is a global real analytic isomorphism if n = 2. If n ≥ 3, an el-
ement β of PSO3(R) of order n determines an orientation of the tangent
space of P2(R) at Cβ. It follows that C factorizes through the orientation
double covering S2 → P2(R). Since the sphere S2 is simply connected, the
number of connected components of PSO3(R)[n] is equal to 1

2
ϕ(n), and each

connected component of PSO3(R)[n] is real analytically isomorphic to S2.
Now, the subset B̃n

d of B̃d can be identified with the subset of Ãd ×
PSO3(R)[n] of all pairs ((A,O), β) such that β(A) = A and β(O) = O−. The
latter subset is clearly a closed real analytic subvariety of Ãd × PSO3(R)[n].
We show that it is smooth:
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Proposition 4.1. The subset B̃n
d of Ãd×PSO3(R)[n] is a closed real analytic

submanifold of Ãd × PSO3(R)[n].

Proof. Let β ∈ PSO3(R)[n]. Let

f : PSO3(R) −→ PSO3(R)[n]

be the map defined by f(γ) = γβγ−1. Since f is a real analytic submersion,
there are a locally closed real analytic submanifold U of PSO3(R) containing
the identity, and an open neighborhood V of β in PSO3(R)[n] such that the
restriction of f to U is a real analytic isomorphism. Define a map

F : Ãd × U −→ Ãd × V

by F ((A,O), γ) = ((γA, γO), f(γ)). Then F is a real analytic isomorphism,
and F−1(B̃n

d ) is equal to the subset M of Ãd × U of all elements ((A,O), γ)
such that β(A) = A and β(O) = O−. To put it otherwise, M is equal
to Ãβ

d ×U , where Ãβ
d is the set of fixed points of β on Ãd. Since Ãd is a real

analytic manifold, and β acts as a real analytic automorphism of finite order
on Ãd, the subset Ãβ

d is a smooth closed real analytic subvariety of Ãd. It
follows that B̃n

d is a smooth closed analytic subvariety of Ãd × PSO3(R)[n],
i.e., it is a closed real analytic submanifold.

Let ` be a natural integer, and let B̃n,`
d be the subset of B̃n

d of all triples
(A,O, β) such that A contains exactly ` lines that pass through the center Cβ

of β.

Proposition 4.2. Let d, n, ` be natural integers. The subset B̃n,`
d is nonempty

if and only if











d and n are even and nonzero, and ` ≤ d,

n divides 2` with odd quotient, and

n divides d− ` or d− `− 1.

(1)

Proof. Suppose that B̃n,`
d is nonempty. Let (A,O, β) be an element of B̃n,`

d .
As observed earlier, d is even and nonzero. Of course, n 6= 0 and ` ≤ d. By
Theorem 3.2, n is even, and divides 2` with odd quotient. Moreover, since β
acts freely on the set of real projective lines of P2 that do not pass through Cβ

and that are different from Lβ, the integer n divides d− ` or d− `− 1.
Conversely, suppose that d, n, ` satisfy condition 1. Choose any β ∈

PSO3(R) of order n. Let k be the quotient of ` by n/2. Choose k generic real
projective lines L1, . . . , Lk through Cβ. Let m be the quotient of d− ` by n,
if n divides d−`, and the quotient of d−`−1, if n divides d−`−1. Choose m
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generic real projective lines L′
1, . . . , L

′
m in P2. Let A be the union of the orbits,

under the action of the subgroup generated by β, of L1, . . . , Lk, L
′
1, . . . , L

′
m

if n divides d − `, and the union of the orbits of L1, . . . , Lk, L
′
1, . . . , L

′
m, Lβ,

if n divides d− `− 1. Then A is a real line arrangement of degree d. Since d
is even, there is a closed subset O of P2(R) such that ∂O = A(R). By
Theorem 3.2, one has β(A) = A and β(O) = O−. It follows that (A,O, β) is
an element of B̃n,`

d .

Let d, n, ` be natural integers. We will say that the triplet (d, n, `) is
admissible if d, n, ` satisfy condition (1). By the preceding proposition, B̃n,`

d

is nonempty if and only if (d, n, `) is admissible.
Recall that ϕ(n) denotes Euler’s totient function, i.e., ϕ(n) is the number

of integers k with 1 ≤ k ≤ n that are relatively prime with n. To put it
otherwise, ϕ(n) is equal to the cardinality of the group of generators (Z/nZ)?

of Z/nZ.

Proposition 4.3. Suppose that (d, n, `) is admissible. The subset B̃n,`
d is

an open and closed subset of B̃n
d . In particular, B̃n,`

d is a closed real an-
alytic submanifold of Ãd × PSO3(R)[n]. Moreover, the action of (Z/nZ)?

on B̃n,`
d defined by k · (A,O, β) = (A,O, βk) induces a free and transitive

action of (Z/nZ)?/{±1} on the set of connected components of B̃n,`
d . In par-

ticular, the number of connected components of B̃n,`
d is equal to 1

2
ϕ(n), except

when n = 2, in which case B̃n,`
d has 1 connected component.

Proof. Let B̃n,≤`
d be the subset of B̃n

d of all triples (A,O, β) such that the

number of lines of A through Cβ is less than or equal to `. It is clear that B̃n,≤`
d

is an open subset of B̃n
d . Let us show that it is also closed.

Suppose that (Ak, Ok, βk) is a sequence in B̃n,≤`
d that converges to an

element (A,O, β) of B̃n
d . We prove that the number of lines of A through Cβ

is less than or equal to `. Suppose to the contrary that this number is greater
than `. Then there is a line L in A through Cβ that is the limit of a sequence
of lines Lk of Ak that do not pass through the center of βk. Let L′

k be the

image of Lk by β
n/2
k . Then L′

k is a line of Ak distinct from Lk. The limit
of L′

k is equal to βn/2(L). Now, since L passes through the center of βn/2,
and since βn/2 is of order 2, the line βn/2(L) is equal to L. It follows that L
is a line of A of multiplicity 2. Contradiction, since A is a reduced real line
arrangement. This proves that B̃n,≤`

d is an open and closed subset of B̃n
d . It

follows that
B̃n,`

d = B̃n,≤`
d \ B̃n,≤`−1

d

is an open and closed subset of B̃n
d .

11



For a given isometry γ of order n, the subset of B̃n,`
d consisting of all

elements (A,O, β) such that β = γ is easily seen to be connected. Therefore,
in order to prove the last statement of the lemma, it suffices to show the
following. The action of (Z/nZ)? on PSO3(R)[n] defined by k · β = βk

induces a free and transitive action of (Z/nZ)?/{±1} on the set of connected
components of PSO3(R)[n]. Indeed, as we have seen above, the map C
from PSO3(R)[n] into P2(R) is a topological covering map of degree ϕ(n). In
fact, it is the quotient map of for the action of (Z/nZ)? on PSO3(R)[n]. In
particular, it is an isomorphism if n = 2, which shows that B̃n,`

d is connected
if n = 2. Now, assume that n ≥ 3. Let λ : [0, 1] → P2(R) be a nontrivial loop
in P2(R), and let λ̃ be a lift to PSO3(R)[n]. Then, λ̃(1) = λ̃(0)−1. Since n ≥ 3,
each connected component of PSO3(R)[n] is a nontrivial covering of degree 2
of P2(R), and the group of covering automorphisms is the subgroup {±1}
of (Z/nZ)?. It follows that the induced action of (Z/nZ)?/{±1} on the set
of connected components of PSO3(R)[n] is free and transitive.

5 Moduli of Gaussian bordered line arrangements

Let Ad be the set of isometry classes of bordered real line arrangements of
degree d. More precisely, Ad is the quotient of Ãd by the action of PSO3(R).
Recall from [5] that Ad has a natural structure of a connected semianalytic
variety of dimension 2d, if d is even. Denote by Bd the subset of Ad of
isometry classes of Gaussian bordered line arrangements. More precisely,

Bd = {(A,O) ∈ Ad | ∃β ∈ PSO3(R) : β(A) = A and β(O) = O−}.

Proposition 5.1. Let d be an even nonzero natural integer. The subset Bd

of Ad of Gaussian bordered line arrangements of degree d is a closed real ana-
lytic subset of Ad. In particular, Bd has a natural structure of a semianalytic
variety.

Proof. Define an involution ι on Ad by ι(A,O) = (A,O−). The involution ι
is easily seen to be real analytic. Since Bd is equal to the set of fixed points
of ι on Ad, the subset Bd is a closed real analytic subset of Ad.

In this section we study Bd and determine its irreducible components.
Define a forgetful map

ψ : B̃d −→ Bd

by ψ(A,O, β) = (A,O).

Proposition 5.2. Let d be an even nonzero natural integer. The map ψ is
a real analytic surjection.

12



Proof. The map ψ is clearly real analytic. The map ψ is surjective by defi-
nition of Bd.

Let (d, n, `) be an admissible triple. Define a subset Bn,`
d of Bd by

Bn,`
d = ψ(B̃n,`

d ).

Explicitly, Bn,`
d is the set of isometry classes of all Gaussian bordered line

arrangements (A,O) of degree d such that there is an isometry β of P2 with
the following properties:

1. β(A) = A and β(O) = O−,

2. the order of β is equal to n, and

3. the number of lines of A passing through Cβ is equal to `.

Proposition 5.3. Let (d, n, `) be an admissible triple. The subset Bn,`
d is an

irreducible real analytic subset of Bd. Moreover,

dim(Bn,`
d ) =

{

2d
n
− 1 if ` is even,

2d−2
n

− 1 if ` is odd,

Proof. By Proposition 4.3, B̃n,`
d is a closed real analytic submanifold of Ãd ×

PSO3(R)[n]. Let
p : B̃n,`

d −→ Ãd

be the restriction to B̃n,`
d of the projection of Ãd ×PSO3(R)[n] onto the first

factor. It is clear that p is a proper immersion of B̃n,`
d into Ãd. It follows that

the image M of p is a real analytic submanifold of Ãd. Since p is constant
on the orbits in B̃n,`

d for the action of (Z/nZ)?, the map p factors through

the quotient B̃n,`
d /(Z/nZ)?. The latter quotient is a connected real analytic

manifold by Proposition 4.3. It follows that the image M of p is a connected
closed real analytic submanifold of Ãd. Since M is stable for the action
of PSO3(R) on Ãd, its image in the quotient Ad of Ãd is an irreducible closed
real analytic subvariety. The latter image is nothing but the subset Bn,`

d .

In order to determine the dimension of Bn,`
d , let us first determine the di-

mension of B̃n,`
d . An element of B̃n,`

d is a triple (A,O, β) where β is an isometry
of P2 of order 2 with β(A) = A and β(O) = O−, such that the number of
lines of A passing through Cβ is equal to `. Now, the set PSO3(R)[n] is of
dimension 2. For a given β ∈ PSO3(R)[n], the number of lines through Cβ

that one can choose more or less arbitrary in order to get a line arrangement
stable for β, is equal to `/(n/2). If ` is odd then the line Lβ is in A. The

13



number of remaining lines that one choose more or less arbitrary in P2, is
equal to (d− `− 1)/n, if ` is odd. It follows that

dim(B̃n,`
d ) = 2 + `

n/2
+ 2d−`−1

n
= 2d−2

n
+ 2,

if ` is odd. Therefore, dim(Bn,`
d ) = 2d−2

n
− 1 if ` is odd. The case ` is even is

similar, except that Lβ does not belong to such line arrangements.

Although all subsets Bn,`
d of Bd are irreducible, they are are not all irre-

ducible components of Bd, as follows from the following statement. Recall
that ord2(n) denotes the 2-valuation of an integer n.

Proposition 5.4. Let (d, n, `) be an admissible triple. Let i = ord2(n).
Then,

Bn,`
d ⊆ B2i,`

d .

Proof. Let (A,O) be a Gaussian bordered line arrangement in Bn,`
d . This

means that there is an isometry β of order n of P2 such that β(A) = A
and β(O) = O−. Moreover, the number of lines belonging to A that pass
through Cβ is equal to `. Since i = ord2(n), there is an odd natural integer k
such that n = 2ik. Now, the isometry βk satisfies βk(A) = A and βk(O) = O−

since k is odd. Also, βk 6= id since n is even. Therefore, βk has a center,
and this center is obviously equal to Cβ. It follows that (A,O) is an element

of B2i ,`
d .

Let d be an even nonzero natural integer. We will determine the set of
pairs (n, `) of natural integers such that (d, n, `) is admissible and such that n
is a power of 2.

Let i = ord2(d), and let e be the natural integer such that d = 2i(2e+1).
Define subsets I I

d and I II
d of N × N by

I I
d = {(n, `) |n = 2, ` = 2k + 1, k ∈ N, k ≤ d

2
− 1}

and
I II
d = {(n, `) |n = 2i+1, ` = 2i(2k + 1), k ∈ N, k ≤ e}.

Note that the sets I I
d and I II

d are disjoint.

Lemma 5.5. Let d be an even nonzero natural integer. The set of pairs (n, `)
of natural integers such that n is a power of 2 and such that (d, n, `) is
admissible, is equal to I I

d ∪ I II
d .

14



Proof. Suppose that (n, `) ∈ I I
d. Then n = 2i+1 and ` = 2i(2k+1), where i =

ord2(d) and 0 ≤ k ≤ e with d = 2i(2e + 1). It follows that n is even and
nonzero, that ` ≤ d, that n divides 2` and that the quotient 2`/n is odd.
Moreover, n divides d− `. Therefore, (d, n, `) is admissible.

Suppose that (n, `) ∈ I II
d . Then n = 2 and ` = 2k+1, where 0 ≤ k ≤ d

2
−1.

It follows that n is even and nonzero, that ` ≤ d, that n divides 2` and that
the quotient 2`/n is odd. Moreover, n divides d− `− 1. Therefore, (d, n, `)
is admissible.

Conversely, suppose that (d, n, `) is admissible, and that n is a power of 2.
Since n is an even power of 2, there is a natural integer j such that n = 2j+1.
Since n divides 2` and the quotient is odd, ` = 2j(2k + 1), for some natural
integer k.

Now, n divides d−` or n divides d−`−1. If n divides d−`, then ord2(d) =
ord2(`), i.e., i = j. Moreover, since ` ≤ d, one has k ≤ e. Therefore,
(n, `) ∈ I II

d if n divides d− `. If n divides d− `− 1, then ` is odd, as n and d
are even. Hence, j = 0. Moreover, since ` ≤ d, one has k ≤ d

2
−1. Therefore,

(n, `) ∈ I I
d if n divides d− `− 1. It follows that (n, `) ∈ I I

d ∪ I II
d .

Lemma 5.6. Let (n, `), (n′, `′) ∈ I I
d ∪ I II

d with (n, `) 6= (n′, `′). Then

Bn,`
d ⊆ Bn′,`′

d

if and only if

1. d = 2, or

2. d is a power of 2, (n, `) = (2d, d) and (n′, `′) = (2, 1).

Proof. Let us treat the case d = 2 separately. If d = 2 then I I
d = {(2, 1)}

and I II
d = {(4, 2)}. It is easy to see that B2,1

d = B4,2
d if d = 2. Indeed,

the isometry class of the bordered line arrangement defined by the inequal-
ity xy ≥ 0 is the only element of both B2,1

d and B4,2
d . Therefore, we may

assume for the rest of the proof that d ≥ 4.
If d is a power of 2, (n, `) = (2d, d) and (n′, `′) = (2, 1) then Bn,`

d is

contained in Bn′,`′

d . Indeed, the subset Bn
d ` of Bd consists of one element

only. Let β be an isometry of P2 of order 2d. Let L be a real projective line
through Cβ. Let A be the real line arrangement in P2 of degree d containing L
and its d−1 successive images by β. Choose any closed subset O of P2(R) such
that ∂O = A(R). Then, the isometry class of (A,O) is the unique element
of B2d,d

d . Let β ′ be the reflection of P2 in L. Then, β ′(A) = A and β ′(O) = O−.
Also, the center Cβ′ of β ′ lies on βd/2(L), the line of A perpendicular to L.
This shows that the isometry class of (A,O) belongs also to B2,1

d . It follows

that B2d,d
d is contained in B2,1

d , when d is a power of 2.
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Let i = ord2(d), as above. In order to prove the lemma, we prove, con-
versely, the following 4 statements:

1. if n = 2i+1 and n′ = 2i+1 then Bn,`
d ∩ Bn′,`′

d = ∅,

2. if n = 2 and n′ = 2i+1 then dim(Bn,`
d ) > dim(Bn′,`′

d ),

3. if n = 2i+1 and n′ = 2 then dim(Bn,`
d ∩ Bn′,`′

d ) = dim(Bn,`
d ) implies that

d is a power of 2, (n, `) = (2d, d) and (n′, `′) = (2, 1), and

4. if n = 2 and n′ = 2 then dim(Bn,`
d ∩ Bn′,`′

d ) < dim(Bn,`
d ).

These 4 statements together suffice to prove the lemma. Indeed, if Bn,`
d is

contained in Bn′,`′

d , where (n, `), (n′, `′) ∈ I I
d ∪ I II

d with (n, `) 6= (n′, `′), then
the conclusions of statements 1, 2 and 4 cannot hold. Therefore, n = 2i+1 and
n′ = 2. Since the inclusion also implies that dim(Bn,`

d ∩ Bn′,`′

d ) = dim(Bn,`
d ),

it follows from statement 4 that d is a power of 2, (n, `) = (2d, d) and
(n′, `′) = (2, 1), as was to be proved.

In order to prove statement 1 above, suppose that n = n′ = 2i+1. We show
that the two subvarieties Bn,`

d and Bn′,`′

d are disjoint, if ` 6= `′. Suppose, to the
contrary, that (A,O) is a bordered real line arrangement whose isometry class
belongs to the intersection of the two varieties. Then, there are isometries
β and β ′ of P2, both of order n, such that β(A) = A and β ′(A) = A, and such
that the number of lines of A through Cβ is equal to `, and the number of
lines of A through Cβ′ is equal to `′. Since ` 6= `′, the isometries β and β ′ have
different centers in P2(R). It follows from the classification of finite subgroups
of PSO3(R) that the subgroup of PSO3(R) generated by β and β ′ contains an
element γ such that γ(Cβ) = Cβ′. Since γ belongs to the subgroup generated
by β and β ′, one has γ(A) = A. It follows that the number of lines of A
through Cβ is equal to the number of lines of A through Cβ′, i.e., ` = `′.
Contradiction, since, by hypothesis, ` 6= `′. Therefore, the intersection of
Bn,`

d and Bn′,`′

d is empty. This proves statement 1 above.
In order to prove statement 2, suppose that n = 2 and n′ = 2i+1. We

show that the dimension of Bn,`
d is strictly greater than the dimension of Bn′,`′

d .

Indeed, since n = 2, ` is odd and the dimension of Bn,`
d is equal to (2d−2)/n−

1 = d− 2, by Proposition 5.3. Since n′ = 2i+1, `′ is even and the dimension
of Bn′,`′

d is equal to 2d/n′−1 = d/2i−1, by that same proposition. Since d ≥ 4,
one has

dim(Bn,`
d ) = d− 2 > d

2
− 1 ≥ d

2i − 1 = dim(Bn′,`′

d ).

This proves statement 2.
In order to prove statement 3, suppose that n = 2i+1 and n′ = 2. We

first determine the dimension of the intersection of the two varieties Bn,`
d and
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Bn′,`′

d . Let (A,O) be a bordered line arrangement in the intersection of the
two varieties. Then there is an isometry β of order n and an isometry β ′ of
order n′ such that β(A) = A, β ′(A) = A and such that exactly ` lines of A
pass through Cβ, and exactly `′ lines of A pass through Cβ′. Since 2`/n and
2`′/n′ are odd, ` 6= `′, and the points Cβ and Cβ′ of P2(R) are distinct. It
follows from the classification of finite subgroups of PSO3(R) that β and β ′

generate a subgroup isomorphic to the dihedral group Dn. We identify Dn

with this subgroup.
The action of Dn on the set of lines of A may have orbits of cardinality

2n, n, n
2

and 1. Let a, a′, a′′ and a′′′ be the number of orbits of cardinality
2n, n, n

2
and 1, respectively. Since A is an arrangement of degree d,

2na+ na′ + n
2
a′′ + a′′′ = d.

A line of A is contained in an orbit of cardinality n or n
2

if and only if it
passes through Cβ. Therefore

na′ + n
2
a′′ = `.

A line of A is contained in an orbit of cardinality 1 if and only if it goes
through the centers of all elements of Dn of order 2. Therefore, a′′′ = 0 or 1.
Since ` and d are even, d− ` = 2na+ a′′′ is even. It follows that a′′′ = 0.

The lines of A that are in an orbit of cardinality n
2

are lines that pass
through Cβ and the center of an element of order 2 of Dn. The set of centers
of elements of Dn of order 2 contains exactly 2 orbits for the action of Dn.
It follows that a′′ = 0, 1 or 2. Since 2`/n is odd, one has a′′ = 1.

The lines of A that are in an orbit of cardinality n
2

or 1 are rigid with
respect to Dn. Indeed, a line of A contained in such an orbit is a line that
goes through at least 2 centers of elements of Dn. The number of moduli of
a line of A contained in an orbit of cardinality n is equal to 1. The number
of moduli of a line of A contained in an orbit of cardinality 2n is equal to 2.
It follows that

dim(Bn,`
d ∩ Bn′,`′

d ) = 2a+ a′.

Now, we are ready to prove statement 3. Suppose that dim(Bn,`
d ∩ Bn′,`′

d )

is equal to dim(Bn,`
d ). Since ` is even, one has

2d
n
− 1 = 2a+ a′ = 1

n
(2na + na′) = 1

n
(d− n

2
a′′ − a′′′) =

= 1
n
(d− n

2
) = d

n
− 1

2
= 1

2
(2d

n
− 1).

It follows that n = 2d. In particular, d is a power of 2. Since n divides 2`
with odd quotient, one also obtains that ` = d. Therefore, the arrangement A
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is an arrangement of degree d of d lines passing through one and the same
point. It follows that `′ = 1. This proves statement 3.

The proof of statement 4 is quite similar to the proof of statement 3:
suppose that n = n′ = 2. We determine the dimension of the intersection
of the two varieties Bn,`

d and Bn′,`′

d , if ` 6= `′. Let (A,O) be a bordered line
arrangement in the intersection of the two varieties. Then there are two
isometries β and β ′ of order 2 such that β(A) = A and β ′(A) = A, and
such that exactly ` lines of A pass through Cβ, and exactly `′ lines of A pass
through Cβ′. Since ` 6= `′, the points Cβ and Cβ′ of P2(R) are distinct. It
follows from the classification of finite subgroups of PSO3(R) that β and β ′

generate a subgroup isomorphic to the dihedral group D2. We identify D2

with this subgroup.
The action of D2 on the set of lines of A may have orbits of cardinality

4, 2 and 1. Let a, a′ and a′′ be the number of orbits of cardinality 4, 2 and
1, respectively. Since A is an arrangement of degree d,

4a+ 2a′ + a′′ = d.

A line of A is contained in an orbit of cardinality 4 if and only if it does
not pass through the center of any nontrivial element of D2. A line of A
is contained in an orbit of cardinality 2 if and only if it passes through the
center of exactly 1 nontrivial element of D2. A line of A is contained in an
orbit of cardinality 1 if and only if it passes through the centers of exactly
2 nontrivial elements of D2. Since D2 contains 3 nontrivial elements, one
has a′′ = 0, 1, 2 or 3. Since d is even, one cannot have a′′ = 1 or a′′ = 3.
Therefore, a′′ = 0 0r 2. Since the number of lines of A through Cβ is odd,
one has a′′ 6= 0. Hence, a′′ = 2. It follows that

dim(Bn,`
d ∩ Bn′,`′

d ) = 2a+ a′ = 1
2
(d− a′′) = 1

2
d− 1 < d− 2 = dim(Bn,`

d ),

where the last equality is a consequence of Proposition 5.3. This proves
statement 4.

Theorem 5.7. Let d be an even nonzero natural integer. Then the set of
irreducible components of Bd is

{Bn,`
d | (n, `) ∈ I I

d ∪ I II
d },

except when d is a power of 2, i.e., when e = 0, in which case the set of
irreducible components of Bd is

{Bn,`
d | (n, `) ∈ I I

d}.

Moreover, Bd is connected.
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Proof. By Proposition 5.4 and Lemma 5.5,

Bd =
⋃

(n,`)∈II

d
∪III

d

Bn,`
d .

By Proposition 5.3, the real analytic subsets Bn,`
d are irreducible subsets

of Bd. Suppose that d is not a power of 2. Then, by Lemma 5.6, Bn,`
d is

not contained in Bn′,`′

d for all (n, `), (n′, `′) ∈ I I
d ∪ I II

d with (n, `) 6= (n′, `′).

It follows that the irreducible components of Bd are the subsets Bn,`
d , where

(n, `) runs through I I
d ∪ I II

d , if d is not a power of 2.
If d is a power of 2, then I II

d = {(2d, d)}, and

Bd =
⋃

(n,`)∈II

d

Bn,`
d ,

by Lemma 5.6. It follows from the same Lemma 5.6 that the irreducible
components of Bd are the subsets Bn,`

d , where (n, `) runs through I I
d, if d is a

power of 2.
Let us show the connectedness of Bd. As we have seen in the proof of

Lemma 5.6, the intersection of Bn,`
d and Bn′,`′

d is non empty if n = 2 or 2i,
and n′ = 2 ,where (n, `), (n′, `′) ∈ I I

d ∪ I II
d . It follows from what has been said

above that Bd is connected.

6 Moduli of anisotropic Gaussian curves

Let g ≥ 2 be a natural integer. Let Hg denote the moduli space of anisotropic
real hyperelliptic curves of genus g. Recall that Hg is nonempty if and
only if g is odd and g ≥ 2 [3, Proposition 6.1], and that Hg has a natural
structure of a semianalytic variety [5]. Let κ : Hg → Hg be the involution
defined by κ(X) = X−. Its is easy to see that κ is a real analytic involution
on Hg. The set of fixed points Gg of κ is the set of isomorphism classes
of anisotropic real hyperelliptic curves that are Gaussian. Since κ is a real
analytic involution on a semianalytic variety, Gg is a real analytic subset
of Hg. In particular, Gg has a natural structure of a semianalytic variety.

Let
ρ : Bg+1 −→ Gg

be the map that maps an element (A,O) to the Gaussian anisotropic curve
associated to (A,O).

Theorem 6.1. The map ρ is a real analytic isomorphism.

19



Proof. The map ρ extends to a map, again denoted by ρ, from Ag+1 into Hg

defined similarly: if (A,O) is a bordered real line arrangement of degree g+1
then ρ(A,O) is the anisotropic real hyperelliptic curve associated to (A,O).
It is proved in [5] that ρ is a real analytic isomorphism. Since κ ◦ ρ = ρ ◦ ι,
the restriction of ρ to set of fixed points of ι on Ag+1 is an isomorphism onto
the set of fixed points of κ on Hg. The former set of fixed points is equal
to Bg+1, the latter set of fixed points is equal to Gg.

Let n and ` be natural integers. Define the subset Gn,`
g of Gg by

Gn,`
g = ρ(Bn,`

g+1).

Since ρ is a bijection, the subset Gn,`
g of Gg is nonempty if and only if the

triple (g + 1, n, `) is admissible, i.e., if and only if











g is odd and g ≥ 2, n is even and nonzero, and ` ≤ g + 1,

n divides 2` with odd quotient, and

n divides g + 1 − ` or g − `.

(2)

Theorem 6.2. Let g, n and ` be natural integers satisfying condition (2).
Then the subset Gn,`

g is an irreducible real analytic subset of Gg. Moreover,

dim(Gn,`
g ) =

{

2g+2
n

− 1 if ` is even,
2g
n
− 1 if ` is odd,

Proof. The statement is a direct consequence of Proposition 5.3 and Theo-
rem 6.1.

Theorem 6.3. Let g be an odd natural integer with g ≥ 2. Then the irre-
ducible components of Gg are the real analytic subvarieties Gn,`

g , where (n, `)
runs through I I

g+1 ∪ I II
g+1, if g+1 is not a power of 2. If g+1 is a power of 2,

then the irreducible components of Gg are the real analytic subvarieties Gn,`
g ,

where (n, `) runs through I I
g+1. In particular, Gg is not irreducible.

Proof. The statement is a direct consequence of Theorem 5.7 and Theo-
rem 6.1, except for the last assertion. In order to see that Gg is not irreducible,
it suffices to note that I I

g+1 contains at least 2 elements.

Proof of Theorem 1.1. As observed above, Gg is a real analytic subset of Hg.
It follows from Theorem 5.7 that Gg is connected, if g is odd. It is well known
that Hg is empty if g is even [3, Proposition 6.1]. Therefore, Gg is empty
and connected, if g is even. If g is odd then Gg is nonempty and reducible,
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as will follow from the fact, proved below, that the number of irreducible
components of Gg is nonzero.

If g+ 1 is a power of 2, then the number of irreducible components of Gg

is equal to the cardinality of the set I I
g+1, by Theorem 6.3. This cardinality

is equal to 1
2
(g+1). Therefore, the number of irreducible components of Gg is

equal to 1
2
(g+1), if g+1 is a power of 2. Moreover, all irreducible components

of Gg are of dimension g − 1, by Theorem 6.2 and Theorem 6.3, if g + 1 is a
power of 2.

Similarly, if g is odd and g + 1 is not a power of 2 then the number of
irreducible components of Gg is equal to the cardinality of the set I I

g+1∪ I II
g+1,

by Theorem 6.3. This cardinality is equal to 1
2
(g + 1) + 1

2
(h + 1), where h

is the greatest odd divisor of g + 1. Therefore, the number of irreducible
components of Gg is equal to 1

2
(g+h+2), if g is odd and g+1 is not a power

of 2. Moreover, one of such an irreducible component is of dimension g−1 or
h− 1, by Theorem 6.2 and Theorem 6.3.

7 Examples

In the present section we apply our results to anisotropic Gaussian curves of
genus 3. To simplify some statements, we introduce an additional notation.

Let (A,O) be a bordered line arrangement and let X be the associated
anisotropic curve. Let Isom(A) be the group of all isometries β of P2 such
that β(A) = A. We denote by Isom+(A) the subgroup of Isom(A) of isome-
tries that satisfy β(O) = O, and by Isom−(A) its complement in Isom(A).
Since every isometry β ∈ Isom(A) is induced by a pair of automorphisms α
and α ◦ [−1] on the curve XC, it is clear that one can view Isom(A) as a
subgroup of the reduced automorphism group Aut(XC) = Aut(XC)/〈[−1]〉.

Note that the above considerations highlight a natural link between the
study of anisotropic Gaussian curves and two others kind of problems: the
study of automorphisms groups of anisotropic curves (see [2]) and the study
of anisotropic real structures on complex hyperelliptic curves (see [1]).

Example 7.1. Let X be the anisotropic curve of genus 3 defined by the
homogeneous polynomial

p(x, y, z) = yz(y2 − 3x2)

and let (A,O) be the bordered line arrangement defined by p. It is easy to
see that the groups Isom+(A) and Isom(A) are isomorphic to the dihedral
groups D3 and D6, respectively. Moreover XC is isomorphic to the hyperel-
liptic complex curve defined by the affine plane equation v2 = u(u6 − 1). It
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is known that, for such a curve, the reduced automorphisms group Aut(XC)
is isomorphic to the dihedral group D6. Therefore, one has:

Isom+(A) ( Isom(A) = Aut(XC).

We describe the 6 elements of the set Isom−(A).
There is exactly 1 isometry β ∈ Isom−(A) of order n = 2 such that the

number of lines ` of A through Cβ is equal to 3. It is the rotation β of
center (0, 0, 1), line at infinity z = 0, and angle π. Note that β is induced by
the automorphism α : XC → XC defined by α(w, x, y, z) = (iw, x, y,−z).
The corresponding isomorphism γ : X → X− is given by γ(w, x, y, z) =
(w, x, y,−z).

There are exactly 3 isometries in Isom−(A) with n = 2 and ` = 1. These
are the rotations of angle π, of centers (0, 1, 0), (

√
3, 1, 0) and (

√
3,−1, 0),

and lines at infinity y = 0, x
√

3 + y = 0 and x
√

3 − y = 0, respectively.
There are exactly 2 isometries in Isom−(A) with n = 6 and ` = 3. These

are the rotations of center (0, 0, 1), line at infinity z = 0, and angles ± π
3
.

In terms of the moduli spaces Gn,`
g , this means that

X ∈ G2,1
3 ∩ G2,3

3 ∩ G6,3
3 .

We give a more precise description of the entire moduli space G3 of all
anisotropic Gaussian curves of genus 3, in the next example.

Example 7.2. By Theorem 6.3 and Theorem 6.2, the moduli space G3 has
two irreducible components, each of dimension 2:

G3 = G2,1
3 ∪ G2,3

3 .

The component G2,1
3 is equal to the set of isomorphism classes of aniso-

tropic Gaussian curves X defined by a homogeneous polynomial p of the
form:

p(x, y, z) = yz(ax+ y + bz)(ax − y + bz) (a, b ∈ R, (a, b) 6= (0, 0)).

For such a curve, an isomorphism γ fromX intoX− is given by γ(w, x, y, z) =
(w, x,−y, z).

The component G2,3
3 is equal to the set of isomorphism classes of aniso-

tropic Gaussian curves Y defined by a homogeneous polynomial p of the
form:

p(x, y, z) = yz(x+ cy)(x+ dy) (c, d ∈ R, c 6= d).

For such a curve, an isomorphism from Y into Y − is given by γ(w, x, y, z) =
(w, x, y,−z).
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The intersection G2,1
3 ∩ G2,3

3 is not empty. More precisely, by the proof
of Lemma 5.6, it is a subspace of G3 of dimension 1. In fact, if, in the
above equation of the curve X, one takes b = 0 (or, which amounts to the
same, if, in the equation of the curve Y , one take d = −c), one obtains a
one-dimensional family of anisotropic Gaussian curves, that are both in G2,1

3

and G2,3
3 .

For completeness, let us also describe the other nonempty irreducible
moduli spaces Gn,`

3 . By condition (2) of Section 6, (n, `) = (6, 3) or (8, 4). By
Theorem 6.2, the moduli spaces G6,3

3 and G8,4
3 are of dimension 0.

The moduli space G6,3
3 consists of the curve described in Example 7.1.

Therefore, one has a strict inclusion

G6,3
3 ( G2,1

3 ∩ G2,3
3 .

The moduli space G8,4
3 consists of the anisotropic curve defined by the

homogeneous polynomial p(x, y, z) = yz(y + z)(−y + z). In fact, if (A,O) is
the bordered line arrangement defined by p, then an isometry β ∈ Isom−(A),
of order 8 and class 4, is the rotation of center (1, 0, 0), line at infinity x = 0
and angle π

4
. Note that one can obtain this curve by taking a = 0 and b = 1

in the equation of the curve X ∈ G2,1
3 above. Therefore, one has the strict

inclusion
G8,4

3 ( G2,1
3 .

As a final remark, the intersection G2,1
3 ∩ G2,3

3 , as well as the moduli
spaces G6,3

3 and G8,4
3 , lie in the boundary of the entire moduli space H3 of all

anisotropic curves of genus 3. But the general anisotropic Gaussian curve of
the moduli space G3 does not lie in the boundary of H3.

The following is an example of an anisotropic curves which is not a Gaus-
sian curve.

Example 7.3. Let X be the anisotropic real curve of genus 3 defined by the
homogeneous polynomial

p(x, y, z) = (x+ y + z)(x − y + z)(−x + y + z)(−x − y + z).

Let (A,O) be the bordered line arrangement in P2 defined by p.
Proceeding as in the Example 7.1, one easily sees that the group Isom+(A)

is isomorphic to the symmetric group S4. Since Isom+(A) is a subgroup
of Aut(XC) and since there are no hyperelliptic complex curves of genus 3
having a reduced automorphism group of order greater than 24, we deduce
that XC is isomorphic to the hyperelliptic complex curve defined by the
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affine plane equation v2 = u8 + 14u4 + 1. In fact, it is known to be the only
hyperelliptic complex curve of genus 3 for which Aut(XC) ' S4.

Therefore, we have

Isom+(A) = Isom(A) = Aut(XC).

In particular, Isom−(A) is empty, that is, X is not a Gaussian curve.
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