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Fulton (1984): Study the number of real so-
lutions of enumerative problems in algebraic
geometry

Example 1. Determine the number of real con-
ics, tangent to 5 given smooth real conics. All
of the 3264 complex conics tangent to them
can be real (Fulton and Ronga-Tognoli-Vust,
1997)

Example 2. Given positive integers Iq,...,ls
with [{ 4+ --- 4+ 1ls = 2n — 2, there are real lin-
ear subspaces Lq,...,Lg of P* with dimL; =
n — 1 —[; such that all complex lines meeting
all subspaces L; are real (Sottile, 1997)



Let C C P2 be a smooth real algebraic curve,
deg(C) = ¢, g(C) = 5(c — 1)(c — 2).

C(R) is a smooth 1-dimensional submanifold
of P2(R). Therefore, C(R) is a finite disjoint
union of smooth circles in P2(R). In particular,
#mo(C(R)) < oo.

Harnack’s Inequality (1876):

#mo(C(R)) < g+ 1.

C is an M-curve if #m(C(R)) =g+ 1.
Cis an (M — 1)-curve if #mg(C(R)) = g.

We say that C has many real branches if C is
an M or (M — 1)-curve and g > 1.



Let C C P2 be a smooth real algebraic curve
having many real branches.

Theorem 1. Let e be a partition of c(c—1) of
length g. Let v be the number of real plane
curves of degree ¢ — 1 having tangency e to g
real branches of C. Then, v is finite. More-
over, v #= 0 if and only if e is an even partition.
In that case,
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where m1,...,m, are the multiplicities of e.



Example 3.¢c = 4, g = 3, #mn(C(R)) > 3.
The even partitions of 4 -3 = 12 of length 3
are:

(8,2,2), (6,4,2) and (4,4,4).

Let e be one of them. Let v be the number
of real cubics tangent to 3 real branches of C

with orders of tangency eq,ep,es3.

If #79(C(R)) = 3 then

(06 ife=(8,2,2),
v =288 ife=1(6,4,2),
64 ife=(4,4,4).

If #715(C(R)) = 4 then

(384  ife=(8,2,2),
v=1<1152 ife=(6,4,2),
256  if e = (4,4,4).




Theorem 1 is a consequence of the following
statement:

Theorem 2. Let B;,...,Bg be mutually dis-
tinct real branches of C and put

g
B = ]] B;.
=1
Let e,...,eq be nonzero natural integers, and
let
0. B — Pic(C)
be the map defined by

g
e(P) =cl()  eP;),
i=1

where cl denotes the divisor class. Then, ¢
iIs a topological covering of its image of de-
gree [19_1 e;.



Proof. Let P € B,v € TpB. Suppose that
To(v) = 0. Each (P;,v;) determines a mor-
phism

fi: T —> C, =C XSDGC(R) T,

where T' = Spec(R[e]). Then im(f;) is a rela-
tive Cartier divisor D; of C'/T. If P, = {z; = 0}
locally, then

D; = {x; — \je = 0}

locally on C’, for some \; € R.

One has a naturally split short exact sequence
0 — H(C,0p) — Pic(C') — Pic(C) — 0.
Let D =Y e;D; on C'/T. Since Ty(v) = 0,

cl(D) € im(Pic(C) — Pic(C")) =
= ker(Pic(C") — H(C,0p)).



H'(C,00) = coker(K — P K/Op),
QeC
where Og is the local ring of C at Q and K is
the function field of C. Since

_ . . . 1
(z; — N\e)& = acfz — ez-)\z-xf" 18 = CIJSZ(l — e;\;—€),

T
the image of cl(D) in H1(C,Op) is equal to p =
(pg), where

e — —ei)\ix%_ if Q = P,
@ 0] otherwise

Let ¢ € {1,...,9}. By Riemann-Roch, Jw; €
HY(C,Q¢), w; # 0, such that w;(P;) =0, j # 3.
The form w; has at least 2 zeros on each of the
real branches Bj;, j # i. It follows that w; = 0
on B;. In particular, w;(P;) # 0.
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Let ¢t be the trace map
t: HY(C,Q0) — R.

Since p = 0, one has t(pw) = 0. Hence

1
resp.(—e;\;—w) = 0.
(] xz

Therefore, \; =0, and v = 0. This proves that
¢ is unramified. [ ]
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