On the enumerative geometry of real algebraic curves having many real branches

Johan Huisman

Université Rennes 1, France

johannes.huisman@univ-rennes1.fr

http://name.math.univ-rennes1.fr/johannes.huisman/

Fulton (1984): Study the number of real solutions of enumerative problems in algebraic geometry

Example 1. Determine the number of real conics, tangent to 5 given smooth real conics. All of the 3264 complex conics tangent to them can be real (Fulton and Ronga-Tognoli-Vust, 1997)

Example 2. Given positive integers l_1, \ldots, l_s with $l_1 + \cdots + l_s = 2n - 2$, there are real linear subspaces L_1, \ldots, L_s of \mathbb{P}^n with dim $L_i = n - 1 - l_i$ such that all complex lines meeting all subspaces L_i are real (Sottile, 1997)

Let $C \subseteq \mathbb{P}^2$ be a smooth real algebraic curve, $\deg(C) = c$, $g(C) = \frac{1}{2}(c-1)(c-2)$.

 $C(\mathbb{R})$ is a smooth 1-dimensional submanifold of $\mathbb{P}^2(\mathbb{R})$. Therefore, $C(\mathbb{R})$ is a finite disjoint union of smooth circles in $\mathbb{P}^2(\mathbb{R})$. In particular, $\#\pi_0(C(\mathbb{R})) < \infty$.

Harnack's Inequality (1876):

$$\#\pi_0(C(\mathbb{R})) \leq g+1.$$

C is an M-curve if $\#\pi_0(C(\mathbb{R})) = g + 1$. C is an (M-1)-curve if $\#\pi_0(C(\mathbb{R})) = g$.

We say that C has many real branches if C is an M or (M-1)-curve and $g \ge 1$.

Let $C \subseteq \mathbb{P}^2$ be a smooth real algebraic curve having many real branches.

Theorem 1. Let e be a partition of c(c-1) of length g. Let ν be the number of real plane curves of degree c-1 having tangency e to g real branches of C. Then, ν is finite. Moreover, $\nu \neq 0$ if and only if e is an even partition. In that case,

$$\nu = \begin{cases} \frac{g!}{m_1! \cdots m_r!} \cdot \prod_{i=1}^g \mathbf{e}_i & \text{if } C \text{ is an } (M-1), \\ \frac{(g+1)!}{m_1! \cdots m_r!} \cdot \prod_{i=1}^g \mathbf{e}_i & \text{if } C \text{ is an } M\text{-curve,} \end{cases}$$

where m_1, \ldots, m_r are the multiplicities of e.

Example 3. c = 4, g = 3, $\#\pi_0(C(\mathbb{R})) \ge 3$. The even partitions of $4 \cdot 3 = 12$ of length 3 are:

$$(8,2,2), (6,4,2) \text{ and } (4,4,4).$$

Let e be one of them. Let ν be the number of real cubics tangent to 3 real branches of C with orders of tangency e_1, e_2, e_3 .

If $\#\pi_0(C(\mathbb{R})) = 3$ then

$$\nu = \begin{cases} 96 & \text{if } e = (8, 2, 2), \\ 288 & \text{if } e = (6, 4, 2), \\ 64 & \text{if } e = (4, 4, 4). \end{cases}$$

If $\#\pi_0(C(\mathbb{R})) = 4$ then

$$\nu = \begin{cases} 384 & \text{if } e = (8, 2, 2), \\ 1152 & \text{if } e = (6, 4, 2), \\ 256 & \text{if } e = (4, 4, 4). \end{cases}$$

Theorem 1 is a consequence of the following statement:

Theorem 2. Let B_1, \ldots, B_g be mutually distinct real branches of C and put

$$B = \prod_{i=1}^{g} B_i.$$

Let e_1, \ldots, e_g be nonzero natural integers, and let

$$\varphi \colon B \longrightarrow \mathsf{Pic}(C)$$

be the map defined by

$$\varphi(P) = \operatorname{cl}(\sum_{i=1}^{g} e_i P_i),$$

where cl denotes the divisor class. Then, φ is a topological covering of its image of degree $\prod_{i=1}^g e_i$.

Proof. Let $P \in B, v \in T_PB$. Suppose that $T\varphi(v)=0$. Each (P_i,v_i) determines a morphism

$$f_i \colon T \longrightarrow C' = C \times_{\mathsf{Spec}(\mathbb{R})} T,$$

where $T = \operatorname{Spec}(\mathbb{R}[\varepsilon])$. Then $\operatorname{im}(f_i)$ is a relative Cartier divisor D_i of C'/T. If $P_i = \{x_i = 0\}$ locally, then

$$D_i = \{x_i - \lambda_i \varepsilon = 0\}$$

locally on C', for some $\lambda_i \in \mathbb{R}$.

One has a naturally split short exact sequence

$$0 \longrightarrow H^1(C, \mathcal{O}_C) \longrightarrow \operatorname{Pic}(C') \longrightarrow \operatorname{Pic}(C) \longrightarrow 0.$$

Let $D = \sum e_i D_i$ on C'/T. Since $T\varphi(v) = 0$,

$$cl(D) \in im(Pic(C) \longrightarrow Pic(C')) =$$

= $ker(Pic(C') \longrightarrow H^1(C, \mathcal{O}_C)).$

$$H^1(C, \mathcal{O}_C) = \operatorname{coker}(K \longrightarrow \bigoplus_{Q \in C} K/\mathcal{O}_Q),$$

where \mathcal{O}_Q is the local ring of C at Q and K is the function field of C. Since

$$(x_i - \lambda_i \varepsilon)^{e_i} = x_i^{e_i} - e_i \lambda_i x_i^{e_i - 1} \varepsilon = x_i^{e_i} (1 - e_i \lambda_i \frac{1}{x_i} \varepsilon),$$

the image of cl(D) in $H^1(C, \mathcal{O}_C)$ is equal to $\rho = (\rho_Q)$, where

$$\rho_Q = \begin{cases} -e_i \lambda_i \frac{1}{x_i} & \text{if } Q = P_i, \\ \mathbf{0} & \text{otherwise} \end{cases}$$

Let $i \in \{1, \ldots, g\}$. By Riemann-Roch, $\exists \omega_i \in H^0(C, \Omega_C)$, $\omega_i \neq 0$, such that $\omega_i(P_j) = 0$, $j \neq i$. The form ω_i has at least 2 zeros on each of the real branches B_j , $j \neq i$. It follows that $\omega_i \neq 0$ on B_i . In particular, $\omega_i(P_i) \neq 0$.

Let t be the trace map

$$t: H^1(C,\Omega_C) \longrightarrow \mathbb{R}.$$

Since $\rho = 0$, one has $t(\rho\omega) = 0$. Hence

$$\operatorname{res}_{P_i}(-e_i\lambda_i\frac{1}{x_i}\omega)=0.$$

Therefore, $\lambda_i=0$, and v=0. This proves that φ is unramified. \square