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1 The Second Main Theorem in Value Distribution Theory

The Value Distribution Theory of meromorphic functions on C was
established by Nevanlinna in 1925. The core of this theory consits of
two Main Theorems, the first and the second. There are not many
cases where the Second Main Theorem is established. The following
are main results for the case of meromorphic mappings of Cm into
CPn :
1) m = n = 1, for nonconstant meromorphic functions and fix
points, we have the S. M. T with multiplicities are truncated by 1
(1925, Nevanlinna).
2) m = 1, n 1 for linearly nondegenerate mappings and fixed hy-
perplanes in general position, we have the S. M. T with multiplicities
are truncated by n (1933, Cartan).
3)m 1, n 1 for linearly nondegenerate and fixed hyperplanes in
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general position, we have the S. M. T with multiplicities are truncated
by n (1953, Stoll).
4)m 1, n 1 for linearly nondegenerate and moving hyperplanes
in general position, we have the S. M. T with multiplicities are not
truncated (1991, Stoll-Ru).
5) m = n = 1, for nonconstant meromorphic functions and moving
points, we have the S. M. T with multiplicities are truncated by 1
(2002, Yamanoi).
6) m = 1, n 1 for linearly nondegenerate and fixed and moving
hypersurfaces in general position, we have the S. M. T with multiplic-
ities are not truncated, the defect relation is bounded by 2n (1992,
Eremenko- Sodin).
7)m = 1, n 1 for algebracally nondegenerate and fixed hypersur-
faces in general position, we have the S. M. T with multiplicities are
not truncated, the defect relation is bounded by n + 1 (2004, Ru).
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In this part we give a Second Main Theorem for the case wherem
1, n 1, algebracally nondegenerate meromorphic mappings and
moving hypersurfaces in general position (in the second main theorem,
multiplicities are truncated by a positive integer L, the defect relation
is bounded by n + 1.)

We set ,z, := D|z1|2 + · · · + |zm|2i1/2 for z = (z1, . . . , zm) ∈ Cm
and define B(r) :=

\
z ∈ Cm : |z| < r�, S(r) := \z ∈ Cm : |z| =

r
�
for all 0 < r <∞.
Define

dc :=

√−1
4π

(∂ − ∂), ν :=
D
ddc,z,2im−1 and

σ := dclog,z,2 ∧ Dddclog,z,2im−1.
Let F be a nonzero holomorphic function on Cm. For each a ∈ Cm,
expanding F as F =

�
Pi(z− a) with homogeneous polynomials Pi
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of degree i around a, we define

vF (a) := min
\
i : Pi W≡ 0

�
.

Let ϕ be a nonzero meromorphic function on Cm. We define the
map vϕ as follows: For each z ∈ Cm, we choose nonzero holomorphic
functions F and G on a neighborhood U of z such that ϕ =

F

G
on U

and dim
D
F−1(0)∩G−1(0)i m−2 and then we put vϕ(z) := vF (z).

Set |vϕ| := {z ∈ Cm : vϕ(z) W= 0}.
Let k be positive integer or +∞. Set v[k]ϕ (z) := min{vϕ(z), k}, and
the counting function (with multiplicities are truncated by k)

N
[k]
ϕ (r) :=

r8
1

n[k](t)

t2m−1dt (1 < r < +∞)
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where

n[k](t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

8
|vϕ|∩B(t)

v
[k]
ϕ · ν for m 2,

�
|z| t

v
[k]
ϕ (z) for m = 1.

Let f be a nonconstant meromorphic mapping of Cm into CPn.
The characteristic function of f is defined by

Tf (r) :=

8
S(r)

log,f,σ −
8
S(1)

log,f,σ, 1 < r < +∞.

For a meromorphic function ϕ on Cm, the characteristic function
Tϕ(r) of ϕ is defined as ϕ is a meromorphic map of Cm into CP 1.
We say that a meromorphic function ϕ on Cm is “small” with
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respect to f if Tϕ(r) = o(Tf (r)) as r → ∞ (outside a set of finte
Lebesgue measure).
Denote by Kf the field of all “small” (with respect to f) meromor-
phic functions on Cm.
For a homogeneous polynomialQ ∈ Kf [x0, . . . , xn] of degree d 1
with Q(f0, . . . , fn) W≡ 0, we define

N
[k]
f (r,Q) := N

[k]
Q(f0,...,fn)

(r) and

δf (Q) = lim
r→∞ inf

p
1−

N
[+∞]
f (r,Q)

d · Tf (r)
Q
.

We say that homogeneous polynomials {Qj}qj=1 (q n + 1) in

Kf [x0, . . . , xn] are general position if there exists z ∈ Cm such that
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for any 1 j0 < · · · < jn q the system of equationsF
Qji(z)(w0, . . . , wn) = 0

0 i n

has only the trivial solution w = (0, . . . , 0) in Cn+1.
Theorem 1 (Dethloff- Tan). Let f be a nonconstant mero-
morphic map of Cm into CPn. Let homogeneuos polynomials\
Qj
�q
j=1 in Kf [x0, . . . , xn] be in general position with degQj =

dj 1. Assume that f is algebraically nondegenerate over Kf .
Then for any ε > 0, there exist a positive integer L, depending
only on the Qj and ε, such that

,(q − n− 1− ε)Tf (r)

q3
j=1

1

dj
N
[L]
f (r,Qj).
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for all r ∈ [1,+∞) except for a subset E of (1,+∞) of finite
Lebesgue measure.

For the case of fix hypersurfaces and multiplicities are not trun-
cated, the above Theorem was proved by Ru in 2004 . In the proof,
we use again some techniques of Ru, Ru-Stoll, Fujimoto, Shiroshaki,
and our idea mainly appear in two points: truncating multiplicities
and to overcome the difficulties which come from the case of moving
hypersurfaces (Kf is not algebraically closed in general,...)
Corollary. (B. Shiffman conjecture for moving hypersurfaces) Un-
der the same assumption in the above theorem, we have

q3
j=1

δf (Qj) n + 1.
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2 Uniqueness problem of meromorphic maps

In 1929, Cartan declared that there are at most two meromorphic
functions on C which have the same inverse images ( multiplicities are
truncated by 1) for four distinct values. However in 1988, Steinmetz
gave examples which showed that Cartan’s declaration is false. On
the other hand, in 1998, Fujimoto showed that Cartan’s declaration is
true if we assume that meromorphic functions onC share four distinct
values counted with multiplicities truncated by 2. Furthermore, He
extended this result to the case of meromorphic mappings of Cm into
CPn which have the same inverse images ( multiplicities are truncated
by 2) for q = 3n+1 hyperplanes. He also proposed an open problem
asking if the number of hyperplanes in his result can be replaced by a
smaller one. We note that the number of hyperplanes q = 3n+1 has
been motivated from the observation of the case of one dimension.
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In 2004 Dethloff and Tan gave an answer for the above Fujimoto’s
question. We showed that the Fujimoto’s result can be extended to
the case of 3n−1 hyperplanes, futhermore for n ≥ 7, the multiplicities
are truncated by 1 is enough. Since the above result and some other
ones, It seems to us that we did not find any essential relation between
the case of one dimension and the case of high dimension when giving
the number of hyperplanes for uniqueness theorems.
We now give an other extension of Fujimoto’s result to the case of
few hyperplanes.
Let f be a linearly nondegenerate meromorphic mapping of Cm
into CPn with reduced representation f = (f0 : · · · : fn). Let d be
a positive integer and let H1, · · · , Hq be q hyperplanes in CPn in
general position with dim {z ∈ Cm : ν(f,Hi)(z) > 0 and

ν(f,Hj)(z) > 0} m− 2 (1 i < j q).
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Consider the set F(f, {Hj}qj=1, d) of all linearly nondegenerate
meromorphic mappings g : Cm → CPn with reducded represen-
tation g = (g0 : · · · : gn) satisfying the conditions:
(a) min (ν(f,Hi), d) = min (ν(g,Hi), d) (1 i q),

(b) Zero(fj) ∩ f−1(Hi) = Zero(gj) ∩ f−1(Hi), for all 1 i
q, 0 j n,

(c) DαDfkfsi = DαDgkgsi on D ∪qi=1 f−1(Hi)i\DZero(fs)i, for all|α| < d, 0 k W= s n.

Theorem 2 (Quang-Tan). If

q > max{7(n + 1)
4

,

√
17n2 + 16n + 3n + 4

4
}

then F(f, {Hi}qi=1, 2) contains at most two mappings.
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