On the Kobayashi conjecture

Erwan Rousseau

Université Louis Pasteur, Strasbourg

Aber Wrac'h, September 10, 2007

∃ ⊳

Let X be a complex manifold. Fix a point x ∈ X and a tangent vector ξ ∈ T_{X,x}. Then we define the infinitesimal Kobayashi length of ξ at x to be

$$\begin{split} k_X(\xi) &= \inf\{\lambda > 0 \quad, \quad \text{such that there exists a holomorphic map} \\ f: \Delta \to X \text{ with } f(0) = x \text{ and } \lambda f'(0) = \xi\}. \end{split}$$

- ₹ 🖹 🕨

Let X be a complex manifold. Fix a point x ∈ X and a tangent vector ξ ∈ T_{X,x}. Then we define the infinitesimal Kobayashi length of ξ at x to be

$$\begin{split} k_X(\xi) &= \inf\{\lambda > 0 \quad, \quad \text{such that there exists a holomorphic map} \\ f: \Delta \to X \text{ with } f(0) = x \text{ and } \lambda f'(0) = \xi\}. \end{split}$$

The Kobayashi pseudo-distance d_X, is the geodesic pseudodistance obtained by integrating the Kobayashi-Royden infinitesimal pseudometric.

伺い くほい くほい しほ

Let X be a complex manifold. Fix a point x ∈ X and a tangent vector ξ ∈ T_{X,x}. Then we define the infinitesimal Kobayashi length of ξ at x to be

$$\begin{split} k_X(\xi) &= \inf\{\lambda > 0 \quad, \quad \text{such that there exists a holomorphic map} \\ f: \Delta \to X \text{ with } f(0) = x \text{ and } \lambda f'(0) = \xi\}. \end{split}$$

- The Kobayashi pseudo-distance d_X, is the geodesic pseudodistance obtained by integrating the Kobayashi-Royden infinitesimal pseudometric.
- ► The manifold X is hyperbolic in the sense of S. Kobayashi if *d_X* is a distance.

・ 「「・ ・ 」 ・ ・ 」 コ

$$\blacktriangleright \ k_{\mathbb{C}} \equiv 0 \Rightarrow d_{\mathbb{C}} \equiv 0$$

- ∢ ≣ ▶

æ

•
$$k_{\mathbb{C}} \equiv 0 \Rightarrow d_{\mathbb{C}} \equiv 0$$

• $k_{\Delta}(\xi) = \frac{|\xi|}{1-|x|^2}$: the Poincaré metric

< ≣⇒

< ≣ >

æ

$$k_{\mathbb{C}} \equiv 0 \Rightarrow d_{\mathbb{C}} \equiv 0$$

•
$$k_{\Delta}(\xi) = \frac{|\xi|}{1-|x|^2}$$
: the Poincaré metric

Proposition

Let $f : X \to Y$ be a holomorphic map of complex manifolds then it is distance decreasing i.e for $x, x' \in X$ we have

$$d_Y(f(x),f(x')) \leq d_X(x,x').$$

э

$$k_{\mathbb C} \equiv 0 \Rightarrow d_{\mathbb C} \equiv 0$$

•
$$k_{\Delta}(\xi) = \frac{|\xi|}{1-|x|^2}$$
: the Poincaré metric

Proposition

Let $f: X \to Y$ be a holomorphic map of complex manifolds then it is distance decreasing i.e for $x, x' \in X$ we have

$$d_Y(f(x),f(x')) \leq d_X(x,x').$$

Corollary

If X is Kobayashi hyperbolic then every entire map $f : \mathbb{C} \to X$ is constant i.e X is Brody hyperbolic.

Theorem (Brody)

If X is compact then X is Kobayashi hyperbolic iff X is Brody hyperbolic.

Theorem (Brody)

If X is compact then X is Kobayashi hyperbolic iff X is Brody hyperbolic.

Theorem

Let X be a compact manifold and $Y \subset X$ an hypersurface. If Y and $X \setminus Y$ are Brody hyperbolic then $X \setminus Y$ is hyperbolic.

A general hypersurface X ⊂ Pⁿ (n ≥ 3) of degree deg X ≥ 2n − 1 is hyperbolic.

< ∃ >

- ∢ ⊒ ▶

э

- A general hypersurface X ⊂ Pⁿ (n ≥ 3) of degree deg X ≥ 2n − 1 is hyperbolic.
- The complement Pⁿ\X of a general hypersurface X ⊂ Pⁿ of degree deg X ≥ 2n + 1, n ≥ 2, is hyperbolic.

< 3 >

- ∢ ⊒ ▶

- A general hypersurface X ⊂ Pⁿ (n ≥ 3) of degree deg X ≥ 2n − 1 is hyperbolic.
- The complement Pⁿ\X of a general hypersurface X ⊂ Pⁿ of degree deg X ≥ 2n + 1, n ≥ 2, is hyperbolic.

Conjecture (Lang)

A projective manifold X is hyperbolic iff X and all its subvarieties are of general type.

- ∢ ⊒ ▶

- A general hypersurface X ⊂ Pⁿ (n ≥ 3) of degree deg X ≥ 2n − 1 is hyperbolic.
- The complement Pⁿ\X of a general hypersurface X ⊂ Pⁿ of degree deg X ≥ 2n + 1, n ≥ 2, is hyperbolic.

Conjecture (Lang)

A projective manifold X is hyperbolic iff X and all its subvarieties are of general type.

Conjecture (Green-Griffiths, Lang)

X a projective manifold of general type. Then there exists a subvariety $Y \subsetneq X$ such that for every non constant entire map $f : \mathbb{C} \to X$, $f(\mathbb{C}) \subset Y$.

過き くほき くほう

Definition (Demailly)

X compact manifold, ω a hermitian metric. X is algebraically hyperbolic if $\exists \varepsilon > 0, \forall C \subset X$ compact irreducible curve

$$2g(\widetilde{C}) - 2 \ge \varepsilon \deg_{\omega}(C)$$

where $g(\tilde{C})$ is the genus of the normalization of C and deg_{ω}(C) = $\int_C \omega$.

Definition (Demailly)

X compact manifold, ω a hermitian metric. X is algebraically hyperbolic if $\exists \varepsilon > 0, \forall C \subset X$ compact irreducible curve

$$2g(\widetilde{C}) - 2 \ge \varepsilon \deg_{\omega}(C)$$

where $g(\tilde{C})$ is the genus of the normalization of C and $\deg_{\omega}(C) = \int_{C} \omega$.

Proposition (Demailly)

If X is hyperbolic then X is algebraically hyperbolic.

Definition (Chen)

Let (X, D) be a log-manifold. For each reduced curve C ⊂ X that meets D properly, let v : C̃ → C be the normalization of C. Then i(C, D) is the number of distinct points in the set v⁻¹(D) ⊂ C̃.

Definition (Chen)

- ▶ Let (X, D) be a log-manifold. For each reduced curve $C \subset X$ that meets D properly, let $\nu : \tilde{C} \to C$ be the normalization of C. Then i(C, D) is the number of distinct points in the set $\nu^{-1}(D) \subset \tilde{C}$.
- A logarithmic variety (X, D) is algebraically hyperbolic if there exists a positive number ε such that

$$2g(\widetilde{C}) - 2 + i(C, D) \ge \varepsilon \deg_{\omega}(C)$$

for all reduced and irreducible curves $C \subset X$ meeting D properly where \widetilde{C} is the normalization of C, $g(\widetilde{C})$ its genus and $\deg_{\omega}(C) = \int_{C} \omega$ with ω a hermitian metric on X.

Let Y be a relatively compact complex submanifold of a complex manifold Z. Y is hyperbolically imbedded in Z if $\exists \varepsilon > 0, \forall x \in Y, \forall \xi \in T_{Y,x}, k_Y(\xi) \ge \varepsilon \|\xi\|_{\omega}$ where ω is a hermitian metric on Z.

Let Y be a relatively compact complex submanifold of a complex manifold Z. Y is hyperbolically imbedded in Z if $\exists \varepsilon > 0, \forall x \in Y, \forall \xi \in T_{Y,x}, k_Y(\xi) \ge \varepsilon \|\xi\|_{\omega}$ where ω is a hermitian metric on Z.

Proposition (Pacienza, Rousseau)

Let X be a projective manifold and D an effective divisor on X such that $X \setminus D$ is hyperbolic and hyperbolically imbedded. Then (X, D) is algebraically hyperbolic.

▲ 글 ▶ | ▲ 글 ▶

Theorem (Clemens, Voisin, Pacienza)

All subvarieties of a very generic hypersurface $X_d \subset \mathbb{P}^n$ for $d \geq 2n - 1, n \geq 4$ and $d \geq 6, n = 3$, are of general type.

Theorem (Clemens, Voisin, Pacienza)

All subvarieties of a very generic hypersurface $X_d \subset \mathbb{P}^n$ for $d \ge 2n - 1, n \ge 4$ and $d \ge 6, n = 3$, are of general type.

Corollary

A very generic hypersurface $X_d \subset \mathbb{P}^n$ for $d \ge 2n - 1$, $n \ge 4$ and $d \ge 6$, n = 3, is algebraically hyperbolic.

Theorem (Pacienza, Rousseau)

Let X be a very general hypersurface of arbitrary degree d in \mathbb{P}^n . Let Y be a k-dimensional subvariety in \mathbb{P}^n meeting X properly, $D := Y \cap X$ the induced divisor and $\nu : \widetilde{Y} \to Y$ a log-resolution of (Y, D) i.e \widetilde{Y} is smooth, ν is a projective birational morphism and $\nu^{-1}(D) + Exc(\nu)$ is a normal crossing divisor. Then

$$h^0(\widetilde{Y},\overline{K}_{\widetilde{Y}}\otimes
u^*\mathcal{O}_{\mathbb{P}^n}(2n+1-k-d))
eq 0,$$

where $\overline{K}_{\widetilde{Y}}$ denotes the log-canonical bundle of the log-variety $(\widetilde{Y}, \nu^{-1}(D))$.

Theorem (Pacienza, Rousseau)

Let X be a very general hypersurface of arbitrary degree d in \mathbb{P}^n . Let Y be a k-dimensional subvariety in \mathbb{P}^n meeting X properly, $D := Y \cap X$ the induced divisor and $\nu : \widetilde{Y} \to Y$ a log-resolution of (Y, D) i.e \widetilde{Y} is smooth, ν is a projective birational morphism and $\nu^{-1}(D) + Exc(\nu)$ is a normal crossing divisor. Then

$$h^0(\widetilde{Y},\overline{K}_{\widetilde{Y}}\otimes
u^*\mathcal{O}_{\mathbb{P}^n}(2n+1-k-d))
eq 0,$$

where $\overline{K}_{\widetilde{Y}}$ denotes the log-canonical bundle of the log-variety $(\widetilde{Y}, \nu^{-1}(D))$.

Corollary

Let $X \subset \mathbb{P}^n$ be a very general hypersurface of degree $d \ge 2n + 2 - k$, $k \ge 1$. Then any k-dimensional log-subvariety (Y, D) of (\mathbb{P}^n, X) , for Y not contained in X, is of log-general type.

Let $X \subset \mathbb{P}^n$ be a very general hypersurface of degree $d \ge 2n + 1$. Then (\mathbb{P}^n, X) is algebraically hyperbolic.

Let $X \subset \mathbb{P}^n$ be a very general hypersurface of degree $d \ge 2n + 1$. Then (\mathbb{P}^n, X) is algebraically hyperbolic.

Proof.

• $C \subset \mathbb{P}^n$ a curve intersecting properly the general hypersurface X_F .

Let $X \subset \mathbb{P}^n$ be a very general hypersurface of degree $d \ge 2n + 1$. Then (\mathbb{P}^n, X) is algebraically hyperbolic.

Proof.

- $C \subset \mathbb{P}^n$ a curve intersecting properly the general hypersurface X_F .
- $f: \widetilde{C} \to C$ its desingularization.

Let $X \subset \mathbb{P}^n$ be a very general hypersurface of degree $d \ge 2n + 1$. Then (\mathbb{P}^n, X) is algebraically hyperbolic.

Proof.

- $C \subset \mathbb{P}^n$ a curve intersecting properly the general hypersurface X_F .
- $f: \widetilde{C} \to C$ its desingularization.
- D := C ∩ X_F the divisor given by the intersection with the hypersurface and D̃ = f⁻¹(D).

Let $X \subset \mathbb{P}^n$ be a very general hypersurface of degree $d \ge 2n + 1$. Then (\mathbb{P}^n, X) is algebraically hyperbolic.

Proof.

- $C \subset \mathbb{P}^n$ a curve intersecting properly the general hypersurface X_F .
- $f: \widetilde{C} \to C$ its desingularization.
- D := C ∩ X_F the divisor given by the intersection with the hypersurface and D̃ = f⁻¹(D).

Then

$$0 \leq \mathsf{deg}(K_{\widetilde{C}}(\widetilde{D}) \otimes f^*\mathcal{O}_{\mathbb{P}^n}(2n-d)) = 2g(\mathcal{C}) - 2 + i(\mathcal{C}, X) - (d-2n) \operatorname{deg} \mathcal{C}.$$

• $\mathcal{X} \subset \mathbb{P}^n imes \mathbb{P}^{N_d}$ the universal hypersurface of degree d

< ≣ >

< ∃ >

э

- $\mathcal{X} \subset \mathbb{P}^n imes \mathbb{P}^{N_d}$ the universal hypersurface of degree d
- ▶ $U \subset \mathbb{P}^N$ the open subset parametrizing smooth hypersurfaces

-∢ ≣ ▶

3

- ▶ $\mathcal{X} \subset \mathbb{P}^n \times \mathbb{P}^{N_d}$ the universal hypersurface of degree d
- $\blacktriangleright \ U \subset \mathbb{P}^N$ the open subset parametrizing smooth hypersurfaces
- $\mathcal{Y} \subset \mathbb{P}^n \times \mathbb{P}^N$ an irreducible subvariety intersecting properly \mathcal{X} such that the projection map $\mathcal{Y} \to U$ is dominant of relative dimension k

- $\mathcal{X} \subset \mathbb{P}^n imes \mathbb{P}^{N_d}$ the universal hypersurface of degree d
- ▶ $U \subset \mathbb{P}^N$ the open subset parametrizing smooth hypersurfaces
- $\mathcal{Y} \subset \mathbb{P}^n \times \mathbb{P}^N$ an irreducible subvariety intersecting properly \mathcal{X} such that the projection map $\mathcal{Y} \to U$ is dominant of relative dimension k
- $\mathcal{D} \subset \mathcal{Y}$ the family of divisors induced by the intersections $D_F := Y_F \cap X_F$ and $\widetilde{\mathcal{Y}} \to \mathcal{Y}$ a log resolution of $(\mathcal{Y}, \mathcal{D})$

▲ 臣 ▶ | ▲ 臣 ▶ | |

- $\mathcal{X} \subset \mathbb{P}^n imes \mathbb{P}^{N_d}$ the universal hypersurface of degree d
- ▶ $U \subset \mathbb{P}^N$ the open subset parametrizing smooth hypersurfaces
- $\mathcal{Y} \subset \mathbb{P}^n \times \mathbb{P}^N$ an irreducible subvariety intersecting properly \mathcal{X} such that the projection map $\mathcal{Y} \to U$ is dominant of relative dimension k
- $\mathcal{D} \subset \mathcal{Y}$ the family of divisors induced by the intersections $D_F := Y_F \cap X_F$ and $\widetilde{\mathcal{Y}} \to \mathcal{Y}$ a log resolution of $(\mathcal{Y}, \mathcal{D})$
- ▶ For general $F \in U$, and *arbitrary* degree d we want to produce a non zero element in $H^0(\widetilde{Y}_F, \overline{K}_{\widetilde{Y}_F}(2n+1-k-d))$, where $\overline{K}_{\widetilde{Y}_F} = K_{\widetilde{Y}_F}(\widetilde{D}_F)$.

伺い くほい くほい しほ

- $\mathcal{X} \subset \mathbb{P}^n imes \mathbb{P}^{N_d}$ the universal hypersurface of degree d
- ▶ $U \subset \mathbb{P}^N$ the open subset parametrizing smooth hypersurfaces
- $\mathcal{Y} \subset \mathbb{P}^n \times \mathbb{P}^N$ an irreducible subvariety intersecting properly \mathcal{X} such that the projection map $\mathcal{Y} \to U$ is dominant of relative dimension k
- $\mathcal{D} \subset \mathcal{Y}$ the family of divisors induced by the intersections $D_F := Y_F \cap X_F$ and $\widetilde{\mathcal{Y}} \to \mathcal{Y}$ a log resolution of $(\mathcal{Y}, \mathcal{D})$
- ▶ For general $F \in U$, and *arbitrary* degree *d* we want to produce a non zero element in $H^0(\widetilde{Y}_F, \overline{K}_{\widetilde{Y}_F}(2n+1-k-d))$, where $\overline{K}_{\widetilde{Y}_F} = K_{\widetilde{Y}_F}(\widetilde{D}_F)$.

By adjunction

$$\overline{K}_{\widetilde{Y}_{F}} \simeq \overline{\Omega}_{\widetilde{\mathcal{Y}}}^{N+k} \Big|_{\widetilde{Y}_{F}}$$

伺い くほい くほい しほ

- $\mathcal{X} \subset \mathbb{P}^n imes \mathbb{P}^{N_d}$ the universal hypersurface of degree d
- ▶ $U \subset \mathbb{P}^N$ the open subset parametrizing smooth hypersurfaces
- $\mathcal{Y} \subset \mathbb{P}^n \times \mathbb{P}^N$ an irreducible subvariety intersecting properly \mathcal{X} such that the projection map $\mathcal{Y} \to U$ is dominant of relative dimension k
- ▶ $\mathcal{D} \subset \mathcal{Y}$ the family of divisors induced by the intersections $D_F := Y_F \cap X_F$ and $\widetilde{\mathcal{Y}} \to \mathcal{Y}$ a log resolution of $(\mathcal{Y}, \mathcal{D})$
- ▶ For general $F \in U$, and *arbitrary* degree d we want to produce a non zero element in $H^0(\widetilde{Y}_F, \overline{K}_{\widetilde{Y}_F}(2n+1-k-d))$, where $\overline{K}_{\widetilde{Y}_F} = K_{\widetilde{Y}_F}(\widetilde{D}_F)$.

By adjunction

$$\overline{K}_{\widetilde{Y}_{F}} \simeq \left. \overline{\Omega}_{\widetilde{\mathcal{Y}}}^{N+k} \right|_{\widetilde{Y}_{F}}$$

$$\left(\bigwedge^{n-k} \mathcal{T}_{\mathbb{P}^n imes \mathbb{P}^N}(-\log \mathcal{X})
ight) \bigg|_{\mathbb{P}_F^n} \otimes \overline{K}_{\mathbb{P}_F^n} \simeq \Omega^{N+k}_{\mathbb{P}^n imes \mathbb{P}^N}(\log \mathcal{X}) \Big|_{\mathbb{P}_F^n}$$

▲掃♪ ▲ ヨ♪ ▲ ヨ♪ 二 ヨ
Proof of theorem

▶ For *F* general in *U* we have a non zero map

$$\Omega^{N+k}_{\mathbb{P}^n\times\mathbb{P}^N}(\log\mathcal{X})\Big|_{\mathbb{P}^n_F}(2n+1-k-d)\to\overline{\Omega}^{N+k}_{\widetilde{\mathcal{Y}}}\Big|_{\widetilde{Y}_F}(2n+1+k-d)$$

< ≣⇒

< ∃ >

æ

Proof of theorem

▶ For *F* general in *U* we have a non zero map

$$\Omega^{N+k}_{\mathbb{P}^n\times\mathbb{P}^N}(\log\mathcal{X})\Big|_{\mathbb{P}^n_F}(2n+1-k-d)\to \left.\overline{\Omega}^{N+k}_{\widetilde{\mathcal{Y}}}\right|_{\widetilde{Y}_F}(2n+1+k-d)$$

It is enough to show

$$\left(igwedge^{n-k} T_{\mathbb{P}^n imes \mathbb{P}^N}(-\log \mathcal{X})
ight) igg|_{\mathbb{P}^n_F} \otimes \mathcal{O}_{\mathbb{P}^n_F}(n-k) = igwedge^{n-k} \Big(\left. T_{\mathbb{P}^n imes \mathbb{P}^N}(-\log \mathcal{X})
ight|_{\mathbb{P}^n_F}(1) \Big)$$

is globally generated

.⊒...>

Proof of theorem

• For F general in U we have a non zero map

$$\Omega_{\mathbb{P}^n\times\mathbb{P}^N}^{N+k}(\log\mathcal{X})\Big|_{\mathbb{P}_F^n}(2n+1-k-d)\to \left.\overline{\Omega}_{\widetilde{\mathcal{Y}}}^{N+k}\right|_{\widetilde{Y}_F}(2n+1+k-d)$$

It is enough to show

$$\left(igwedge^{n-k}{igwedge} \mathcal{T}_{\mathbb{P}^n imes \mathbb{P}^N}(-\log \mathcal{X})
ight) igg|_{\mathbb{P}^n_F} \otimes \mathcal{O}_{\mathbb{P}^n_F}(n-k) = igwedge^{n-k}{igwedge} \left(\left. \mathcal{T}_{\mathbb{P}^n imes \mathbb{P}^N}(-\log \mathcal{X})
ight|_{\mathbb{P}^n_F}(1)
ight)$$

is globally generated

Proposition

The twisted logarithmic tangent bundle

$$\mathcal{T}_{\mathbb{P}^n imes \mathbb{P}^{N_d}}(-\log \mathcal{X})(1,0) := \mathcal{T}_{\mathbb{P}^n imes \mathbb{P}^{N_d}}(-\log \mathcal{X}) \otimes p^* \mathcal{O}_{\mathbb{P}^n}(1)$$

is generated by its global sections.

Weak version of Kobayashi conjectures

• $\mathcal{X} \subset \mathbb{P}^n \times \mathbb{P}^{N_d}$ the universal family of hypersurfaces in \mathbb{P}^n with degree d.

< ∃→

э

Weak version of Kobayashi conjectures

- $\mathcal{X} \subset \mathbb{P}^n \times \mathbb{P}^{N_d}$ the universal family of hypersurfaces in \mathbb{P}^n with degree d.
- X_t the fiber of \mathcal{X} over the parameter $t \in \mathbb{P}^{N_d}$.

∃ >

Weak version of Kobayashi conjectures

- $\mathcal{X} \subset \mathbb{P}^n \times \mathbb{P}^{N_d}$ the universal family of hypersurfaces in \mathbb{P}^n with degree d.
- X_t the fiber of \mathcal{X} over the parameter $t \in \mathbb{P}^{N_d}$.

Theorem (Debarre, Pacienza, Paun)

Let $U \to \mathbb{P}^{N_d} := \mathbb{P}H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(d))$ be an étale cover of an open subset of \mathbb{P}^{N_d} , and let $\Phi : \mathbb{C} \times U \to \mathbb{P}^n \times U$ be a holomorphic map such that $\Phi(\mathbb{C} \times \{t\}) \subset X_t$ for all $t \in U$. If $d \ge 2n$, the rank of Φ cannot be maximal anywhere.

- $\mathcal{X} \subset \mathbb{P}^n \times \mathbb{P}^{N_d}$ the universal family of hypersurfaces in \mathbb{P}^n with degree d.
- X_t the fiber of \mathcal{X} over the parameter $t \in \mathbb{P}^{N_d}$.

Theorem (Debarre, Pacienza, Paun)

Let $U \to \mathbb{P}^{N_d} := \mathbb{P}H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(d))$ be an étale cover of an open subset of \mathbb{P}^{N_d} , and let $\Phi : \mathbb{C} \times U \to \mathbb{P}^n \times U$ be a holomorphic map such that $\Phi(\mathbb{C} \times \{t\}) \subset X_t$ for all $t \in U$. If $d \ge 2n$, the rank of Φ cannot be maximal anywhere.

Theorem (Pacienza, Rousseau)

Let $U \to \mathbb{P}^{N_d} := \mathbb{P}H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(d))$ be an étale cover of an open subset of \mathbb{P}^{N_d} , and let $\Phi : \mathbb{C} \times U \to \mathbb{P}^n \times U$ be a holomorphic map such that $\Phi(\mathbb{C} \times \{t\}) \subset \mathbb{P}^n \setminus X_t$ for all $t \in U$. If $d \ge 2n + 1$, the rank of Φ cannot be maximal anywhere.

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ∽ Q ()

• Proof announced by Y.-T. Siu for $d_n \gg n$.

▲ 문 ► ▲ 문 ►

< 17 ▶

æ

- ▶ Proof announced by Y.-T. Siu for $d_n \gg n$.
- ▶ For very generic surfaces in \mathbb{P}^3 of degree $d \ge 18$ [Demailly-El Goul, Paun]

< ∃ →

э

- Proof announced by Y.-T. Siu for $d_n \gg n$.
- ▶ For very generic surfaces in \mathbb{P}^3 of degree $d \ge 18$ [Demailly-El Goul, Paun]
- ► For complements of very generic curves in P² of degree d ≥ 15 [El Goul]

34

- Proof announced by Y.-T. Siu for $d_n \gg n$.
- For very generic surfaces in P³ of degree d ≥ 18 [Demailly-El Goul, Paun]
- ► For complements of very generic curves in P² of degree d ≥ 15 [El Goul]

Theorem

Let $X \subset \mathbb{P}^4_{\mathbb{C}}$ be a generic hypersurface such that $d = deg(X) \ge 593$. Then every entire curve $f : \mathbb{C} \to X$ is algebraically degenerated, i.e there exists a proper subvariety $Y \subset X$ such that $f(\mathbb{C}) \subset Y$.

- Proof announced by Y.-T. Siu for $d_n \gg n$.
- ▶ For very generic surfaces in \mathbb{P}^3 of degree $d \ge 18$ [Demailly-El Goul, Paun]
- ► For complements of very generic curves in P² of degree d ≥ 15 [El Goul]

Theorem

Let $X \subset \mathbb{P}^4_{\mathbb{C}}$ be a generic hypersurface such that $d = deg(X) \ge 593$. Then every entire curve $f : \mathbb{C} \to X$ is algebraically degenerated, i.e there exists a proper subvariety $Y \subset X$ such that $f(\mathbb{C}) \subset Y$.

Theorem

For $X \subset \mathbb{P}^3_{\mathbb{C}}$ a generic hypersurface such that $d = deg(X) \ge 586$, every entire curve $f : \mathbb{C} \to \mathbb{P}^3_{\mathbb{C}} \backslash X$ is algebraically degenerated i.e there exists a proper subvariety $Y \subset \mathbb{P}^3_{\mathbb{C}}$ such that $f(\mathbb{C}) \subset Y$.

< 回 > < 回 > < 回 > …

Theorem

The complement of a very generic curve in \mathbb{P}^2 is hyperbolic and hyperbolically imbedded for all degrees $d \ge 14$.

< ∃ →

э

Theorem

The complement of a very generic curve in \mathbb{P}^2 is hyperbolic and hyperbolically imbedded for all degrees $d \ge 14$.

Theorem

Let $C = C_1 \cup C_2$ where C_i , i = 1, 2, are very generic irreducible smooth curves of \mathbb{P}^2 of degree $d_1 \leq d_2$. Then for

 $\mathbb{P}^2 \setminus C$ is hyperbolic and hyperbolically imbedded.

 Let X be a complex manifold. We start with the directed manifold (X, V).

< ∃ >

э

- ► Let X be a complex manifold. We start with the directed manifold (X, V).
- We define $X_1 := \mathbb{P}(V)$, and $V_1 \subset T_{X_1}$:

$$V_{1,(x,[v])} := \{ \xi \in T_{X_1,(x,[v])} ; \pi_* \xi \in \mathbb{C}v \}$$

where $\pi: X_1 \to X$ is the natural projection.

< ≣ >

- Let X be a complex manifold. We start with the directed manifold (X, V).
- We define $X_1 := \mathbb{P}(V)$, and $V_1 \subset T_{X_1}$:

$$V_{1,(x,[\nu])} := \{ \xi \in T_{X_1,(x,[\nu])} ; \pi_* \xi \in \mathbb{C}\nu \}$$

where $\pi: X_1 \to X$ is the natural projection.

 If f : (C,0) → (X,x) is a germ of holomorphic curve tangent to V then it can be lifted to X₁ as f_[1].

- ₹ 🖹 🕨

- ► Let X be a complex manifold. We start with the directed manifold (X, V).
- We define $X_1 := \mathbb{P}(V)$, and $V_1 \subset T_{X_1}$:

$$V_{1,(x,[v])} := \{ \xi \in T_{X_1,(x,[v])} ; \pi_* \xi \in \mathbb{C}v \}$$

where $\pi: X_1 \to X$ is the natural projection.

- If f : (C,0) → (X,x) is a germ of holomorphic curve tangent to V then it can be lifted to X₁ as f_[1].
- By induction, we obtain a tower of varieties (X_k, V_k). π_k : X_k → X is the natural projection.

- Let X be a complex manifold. We start with the directed manifold (X, V).
- We define $X_1 := \mathbb{P}(V)$, and $V_1 \subset T_{X_1}$:

$$V_{1,(x,[v])} := \{ \xi \in T_{X_1,(x,[v])} ; \pi_* \xi \in \mathbb{C}v \}$$

where $\pi: X_1 \to X$ is the natural projection.

- If f : (C,0) → (X,x) is a germ of holomorphic curve tangent to V then it can be lifted to X₁ as f_[1].
- By induction, we obtain a tower of varieties (X_k, V_k). π_k : X_k → X is the natural projection.
- We have a tautological line bundle $\mathcal{O}_{X_k}(1)$ and we denote $u_k := c_1(\mathcal{O}_{X_k}(1)).$

► Take V := T_X. The direct image π_{k*}(O_{X_k}(m)) is a vector bundle over X which can be described with local coordinates.

_⊒ **)** ∃

- ► Take V := T_X. The direct image π_{k*}(O_{X_k}(m)) is a vector bundle over X which can be described with local coordinates.
- Let z = (z₁,..., z_n) be local coordinates centered in x ∈ X. A local section of π_{k*}(O_{Xk}(m)) is a polynomial

$$P = \sum_{|\alpha_1|+2|\alpha_2|+\ldots+k|\alpha_k|=m} R_{\alpha}(z) dz^{\alpha_1} \ldots d^k z^{\alpha_k}$$

which acts naturally on the fibers of the bundle $J_k X \rightarrow X$ of k-jets of germs of curves in X, and which is invariant under reparametrization i.e

$$P((f \circ \phi)', ..., (f \circ \phi)^{(k)})_t = \phi'(t)^m P(f', ..., f^{(k)})_{\phi(t)}$$

for every $\phi \in \mathbb{G}_k$, the group of *k*-jets of biholomorphisms of $(\mathbb{C}, 0)$.

• The vector bundle $\pi_{k*}(\mathcal{O}_{X_k}(m))$ is denoted $E_{k,m}T_X^*$.

< 臣 ▶

э

- The vector bundle $\pi_{k*}(\mathcal{O}_{X_k}(m))$ is denoted $E_{k,m}T_X^*$.
- ▶ This bundle of invariant jet differentials is a subbundle of the bundle of jet differentials, of order k and degree m, $E_{k,m}^{GG}T_X^* \rightarrow X$ whose fibres are complex-valued polynomials $Q(f', f'', ..., f^{(k)})$ on the fibers of $J_k X$, of weight m under the action of \mathbb{C}^* :

$$Q(\lambda f', \lambda^2 f'', \dots, \lambda^k f^{(k)}) = \lambda^m Q(f', f'', \dots, f^{(k)})$$

for any $\lambda \in \mathbb{C}^*$ and $(f', f'', ..., f^{(k)}) \in J_k X$.

- The vector bundle $\pi_{k*}(\mathcal{O}_{X_k}(m))$ is denoted $E_{k,m}T_X^*$.
- ▶ This bundle of invariant jet differentials is a subbundle of the bundle of jet differentials, of order k and degree m, $E_{k,m}^{GG}T_X^* \rightarrow X$ whose fibres are complex-valued polynomials $Q(f', f'', ..., f^{(k)})$ on the fibers of $J_k X$, of weight m under the action of \mathbb{C}^* :

$$Q(\lambda f', \lambda^2 f'', \dots, \lambda^k f^{(k)}) = \lambda^m Q(f', f'', \dots, f^{(k)})$$

for any $\lambda \in \mathbb{C}^*$ and $(f', f'', ..., f^{(k)}) \in J_k X$.

• For k = 1, $E_{1,m}T_X^* = S^m T_X^*$.

- The vector bundle $\pi_{k*}(\mathcal{O}_{X_k}(m))$ is denoted $E_{k,m}T_X^*$.
- ▶ This bundle of invariant jet differentials is a subbundle of the bundle of jet differentials, of order k and degree m, $E_{k,m}^{GG}T_X^* \rightarrow X$ whose fibres are complex-valued polynomials $Q(f', f'', ..., f^{(k)})$ on the fibers of $J_k X$, of weight m under the action of \mathbb{C}^* :

$$Q(\lambda f', \lambda^2 f'', \dots, \lambda^k f^{(k)}) = \lambda^m Q(f', f'', \dots, f^{(k)})$$

for any $\lambda \in \mathbb{C}^*$ and $(f', f'', ..., f^{(k)}) \in J_k X$.

- For k = 1, $E_{1,m}T_X^* = S^m T_X^*$.
- If X is a surface we have the following description of E_{2,m}T^{*}_X. Let W be the wronskian, W = dz₁d²z₂ − dz₂d²z₁, then every invariant differential operator of order 2 and degree m can be written

$$P = \sum_{|\alpha|+3k=m} R_{\alpha,k}(z) dz^{\alpha} W^k.$$

通 と く ヨ と く ヨ と …

Theorem (Green-Griffiths, Demailly, Siu)

Assume that there exist integers $k,\,m>0$ and an ample line bundle L on X such that

$$H^0(X_k, \mathcal{O}_{X_k}(m)\otimes \pi_k^*L^{-1})\simeq H^0(X, E_{k,m}T_X^*\otimes L^{-1})$$

has non zero sections $\sigma_1, ..., \sigma_N$. Let $Z \subset X_k$ be the base locus of these sections. Then every entire curve $f : \mathbb{C} \to X$ is such that $f_{[k]}(\mathbb{C}) \subset Z$. In other words, for every global \mathbb{G}_k - invariant polynomial differential operator P with values in L^{-1} , every entire curve $f : \mathbb{C} \to X$ must satisfy the algebraic differential equation P(f) = 0. Start with the log directed manifold (X, D, V) where $V \subset \overline{T}_X$ and $\overline{T}_X = T_X(-\log D)$.

< ∃ →

- Start with the log directed manifold (X, D, V) where $V \subset \overline{T}_X$ and $\overline{T}_X = T_X(-\log D)$.
- Define $X_1 := \mathbb{P}(V), D_1 = \pi^*(D)$ and $V_1 \subset \overline{T}_{X_1}$:

$$V_{1,(x,[\nu])} := \{ \xi \in \overline{T}_{X_1,(x,[\nu])} ; \pi_* \xi \in \mathbb{C}\nu \}$$

< ∃ →

- Start with the log directed manifold (X, D, V) where $V \subset \overline{T}_X$ and $\overline{T}_X = T_X(-\log D)$.
- Define $X_1 := \mathbb{P}(V), D_1 = \pi^*(D)$ and $V_1 \subset \overline{T}_{X_1}$:

$$V_{1,(x,[\nu])} := \{ \xi \in \overline{T}_{X_1,(x,[\nu])} ; \ \pi_* \xi \in \mathbb{C}\nu \}$$

▶ By induction, we obtain a tower of varieties (X_k, D_k, V_k) with $\pi_k : X_k \to X$ as the natural projection.

< 国 ▶ < 国 ▶

- Start with the log directed manifold (X, D, V) where $V \subset \overline{T}_X$ and $\overline{T}_X = T_X(-\log D)$.
- Define $X_1 := \mathbb{P}(V), D_1 = \pi^*(D)$ and $V_1 \subset \overline{T}_{X_1}$:

$$V_{1,(x,[\nu])} := \{\xi \in \overline{T}_{X_1,(x,[\nu])} ; \pi_* \xi \in \mathbb{C}\nu\}$$

- ▶ By induction, we obtain a tower of varieties (X_k, D_k, V_k) with $\pi_k : X_k \to X$ as the natural projection.
- We have a tautological line bundle $\mathcal{O}_{X_k}(1)$

The direct image π_{k*}(O_{X_k}(m)) is a locally free sheaf denoted E_{k,m}T^{*}_X generated by all polynomial operators in the derivatives of order 1, 2, ..., k of f, together with the extra function log s_j(f) along the j − th component of D, which are moreover invariant under arbitrary changes of parametrization: a germ of operator Q ∈ E_{k,m}T^{*}_X is characterized by the condition that, for every germ in X\D and every germ φ ∈ G_k of k-jet biholomorphisms of (C, 0),

$$Q(f \circ \phi) = \phi'^m Q(f) \circ \phi.$$

Theorem (Dethloff-Lu)

Assume that there exist integers $k,\,m>0$ and an ample line bundle Lon X such that

$$H^0(X_k, \mathcal{O}_{X_k}(m) \otimes \pi_k^* L^{-1}) \simeq H^0(X, E_{k,m} \overline{T}_X^* \otimes L^{-1})$$

has non zero sections $\sigma_1, ..., \sigma_N$. Let $Z \subset X_k$ be the base locus of these sections. Then every entire curve $f : \mathbb{C} \to X \setminus D$ is such that $f_{[k]}(\mathbb{C}) \subset Z$. In other words, for every global \mathbb{G}_k – invariant polynomial differential operator P with values in L^{-1} , every entire curve $f : \mathbb{C} \to X \setminus D$ must satisfy the algebraic differential equation P(f) = 0.

Global jet differentials in dim 2

► Take (*X*, *D*) a log surface, we have the following filtration of log-jet differentials of order 2:

$$Gr^{\bullet}E_{2,m}\overline{T}_X^* = \underset{0 \leq j \leq m/3}{\oplus} S^{m-3j}\overline{T}_X^* \otimes \overline{K}_X^{\otimes j}$$

E > < E >

э

Global jet differentials in dim 2

► Take (*X*, *D*) a log surface, we have the following filtration of log-jet differentials of order 2:

$$Gr^{\bullet}E_{2,m}\overline{T}_X^* = \underset{0 \leq j \leq m/3}{\oplus} S^{m-3j}\overline{T}_X^* \otimes \overline{K}_X^{\otimes j}$$

> A Riemann-Roch calculation based on the above filtration yields

$$\chi(X, E_{2,m}\overline{T}_X^*) = \frac{m^4}{648}(13\overline{c}_1^2 - 9\overline{c}_2) + O(m^3)$$

which gives by Bogomolov's vanishing theorem

- ∢ ≣ ▶

Global jet differentials in dim 2

► Take (*X*, *D*) a log surface, we have the following filtration of log-jet differentials of order 2:

$$Gr^{\bullet}E_{2,m}\overline{T}_X^* = \underset{0 \leq j \leq m/3}{\oplus} S^{m-3j}\overline{T}_X^* \otimes \overline{K}_X^{\otimes j}$$

A Riemann-Roch calculation based on the above filtration yields

$$\chi(X, E_{2,m}\overline{T}_X^*) = \frac{m^4}{648}(13\overline{c}_1^2 - 9\overline{c}_2) + O(m^3)$$

which gives by Bogomolov's vanishing theorem

Theorem (El Goul)

If (X, D) is an algebraic log surface of log general type and A an ample line bundle over X, then

$$h^0(X, E_{2,m}\overline{\mathcal{T}}_X^*\otimes \mathcal{O}(-A))\geq rac{m^4}{648}(13\overline{c}_1^2-9\overline{c}_2)+O(m^3)$$

E > < E >

Corollary (El Goul)

Let $C \subset \mathbb{P}^2$ be a smooth curve of degree $d \geq 11$. Then $h^0(X, E_{2,m}\overline{T}^*_X \otimes \mathcal{O}(-A)) \neq 0$ for m large enough.
Corollary (El Goul)

Let $C \subset \mathbb{P}^2$ be a smooth curve of degree $d \geq 11$. Then $h^0(X, E_{2,m}\overline{T}^*_X \otimes \mathcal{O}(-A)) \neq 0$ for m large enough.

Corollary

Let $C = C_1 \cup C_2$ where C_i , i = 1, 2, are irreducible smooth curves of \mathbb{P}^2 of degree $d_1 \leq d_2$. Then for

$$\begin{array}{rrrr} d_1 & \geq & 3; \\ d_1 & = & 2, \ d_2 \geq 5; \\ d_1 & = & 1, \ d_2 \geq 7; \end{array}$$

 $h^0(X, E_{2,m}\overline{T}^*_X \otimes \mathcal{O}(-A)) \neq 0$ for m large enough.

Logarithmic vector fields and hyperbolicity

• $\mathcal{X} \subset \mathbb{P}^2 imes \mathbb{P}^{N_d}$ the universal curve given by the equation

$$\sum_{|lpha|=d} a_{lpha} Z^{lpha} = 0, ext{ where } [a] \in \mathbb{P}^{N_d} ext{ and } [Z] \in \mathbb{P}^2.$$

프 + + 프 +

э

Logarithmic vector fields and hyperbolicity

• $\mathcal{X} \subset \mathbb{P}^2 imes \mathbb{P}^{N_d}$ the universal curve given by the equation

$$\sum_{|lpha|=d}$$
 $a_{lpha}Z^{lpha}=0, ext{ where } [a]\in \mathbb{P}^{N_d} ext{ and } [Z]\in \mathbb{P}^2.$

• $\overline{J_2}(\mathbb{P}^2 \times \mathbb{P}^{N_d})$ the manifold of the logarithmic 2-jets.

(《문》 《문》 / 문

Logarithmic vector fields and hyperbolicity

▶ $\mathcal{X} \subset \mathbb{P}^2 \times \mathbb{P}^{N_d}$ the universal curve given by the equation

$$\sum_{|lpha|=d} a_{lpha} Z^{lpha} = 0, ext{ where } [a] \in \mathbb{P}^{N_d} ext{ and } [Z] \in \mathbb{P}^2.$$

- $\overline{J_2}(\mathbb{P}^2 \times \mathbb{P}^{N_d})$ the manifold of the logarithmic 2-jets.
- ▶ $\overline{J_2^{\nu}}(\mathbb{P}^2 \times \mathbb{P}^{N_d})$ the submanifold of $\overline{J_2}(\mathbb{P}^2 \times \mathbb{P}^{N_d})$ consisting of 2-jets tangent to the fibers of the projection $\mathbb{P}^2 \times \mathbb{P}^{N_d} \to \mathbb{P}^{N_d}$.

▶ $\mathcal{X} \subset \mathbb{P}^2 \times \mathbb{P}^{N_d}$ the universal curve given by the equation

$$\sum_{|lpha|=d} a_{lpha} Z^{lpha} = 0, ext{ where } [a] \in \mathbb{P}^{N_d} ext{ and } [Z] \in \mathbb{P}^2.$$

- $\overline{J_2}(\mathbb{P}^2 \times \mathbb{P}^{N_d})$ the manifold of the logarithmic 2-jets.
- ▶ $\overline{J_2^{v}}(\mathbb{P}^2 \times \mathbb{P}^{N_d})$ the submanifold of $\overline{J_2}(\mathbb{P}^2 \times \mathbb{P}^{N_d})$ consisting of 2-jets tangent to the fibers of the projection $\mathbb{P}^2 \times \mathbb{P}^{N_d} \to \mathbb{P}^{N_d}$.

Proposition

The vector bundle $T_{\overline{J_2^{\vee}}(\mathbb{P}^3 \times \mathbb{P}^{N_d})} \otimes \mathcal{O}_{\mathbb{P}^2}(7) \otimes \mathcal{O}_{\mathbb{P}^{N_d}}(*)$ is generated by its global sections on $\overline{J_2^{\vee}}(\mathbb{P}^3 \times \mathbb{P}^{N_d}) \setminus \Sigma$.

伺い くほい くほい しほ

Consider an entire curve f : C → P²\C for a generic curve in P² of degree d ≥ 14 such that the projectivized first derivative f_[1] : C → X₁ is Zariski dense.

三下 人王下

- Consider an entire curve f : C → P²\C for a generic curve in P² of degree d ≥ 14 such that the projectivized first derivative f_[1] : C → X₁ is Zariski dense.
- We have a section

$$\sigma \in H^0(\mathbb{P}^2, E_{2,m}\overline{T}^*_{\mathbb{P}^2} \otimes \overline{K}^{-t}_{\mathbb{P}^2}) \simeq H^0((\mathbb{P}^2)_2, \mathcal{O}_{(\mathbb{P}^2)_2}(m) \otimes \pi_2^*\overline{K}^{-t}_{\mathbb{P}^2}).$$

with zero set Z and vanishing order t(d-3).

< ≣ >

- Consider an entire curve f : C → P²\C for a generic curve in P² of degree d ≥ 14 such that the projectivized first derivative f_[1] : C → X₁ is Zariski dense.
- We have a section

$$\sigma \in H^0(\mathbb{P}^2, E_{2,m}\overline{T}^*_{\mathbb{P}^2} \otimes \overline{K}^{-t}_{\mathbb{P}^2}) \simeq H^0((\mathbb{P}^2)_2, \mathcal{O}_{(\mathbb{P}^2)_2}(m) \otimes \pi_2^*\overline{K}^{-t}_{\mathbb{P}^2}).$$

with zero set Z and vanishing order t(d-3).

Consider the family

$$\mathcal{X} \subset \mathbb{P}^2 imes \mathbb{P}^{N_d}$$

of curves of degree d in \mathbb{P}^2 .

< ∃ >

- Consider an entire curve f : C → P²\C for a generic curve in P² of degree d ≥ 14 such that the projectivized first derivative f_[1] : C → X₁ is Zariski dense.
- We have a section

$$\sigma \in H^0(\mathbb{P}^2, E_{2,m}\overline{T}^*_{\mathbb{P}^2} \otimes \overline{K}^{-t}_{\mathbb{P}^2}) \simeq H^0((\mathbb{P}^2)_2, \mathcal{O}_{(\mathbb{P}^2)_2}(m) \otimes \pi_2^*\overline{K}^{-t}_{\mathbb{P}^2}).$$

with zero set Z and vanishing order t(d-3).

Consider the family

$$\mathcal{X} \subset \mathbb{P}^2 imes \mathbb{P}^{N_d}$$

of curves of degree d in \mathbb{P}^2 .

General semicontinuity arguments concerning the cohomology groups show the existence of a Zariski open set U_d ⊂ P^{N_d} such that for any a ∈ U_d, there exists an irreducible and reduced divisor

$$Z_a = (P_a = 0) \subset (\mathbb{P}^2_a)_2$$

where

$$P_{a} \in H^{0}((\mathbb{P}^{2}_{a})_{2}, \mathcal{O}_{(\mathbb{P}^{2}_{a})_{2}}(m) \otimes \pi_{2}^{*}\overline{K}_{(\mathbb{P}^{2}_{a})}^{-t})$$

such that the family $(P_a)_{a \in U_d}$ varies holomorphically.

Proposition (El Goul)

Let (X, D) be a log surface of log general type with $Pic(X) = \mathbb{Z}$. Suppose that

$$m(13\overline{c}_1^2 - 9\overline{c}_2) > 12t\overline{c}_1^2$$

then there exists a divisor $Y_1 \subset X_1$ such that $im(f_{[1]}) \subset Y_1$.

э

Proposition (El Goul)

Let (X, D) be a log surface of log general type with $Pic(X) = \mathbb{Z}$. Suppose that

$$m(13\overline{c}_1^2-9\overline{c}_2)>12t\overline{c}_1^2$$

then there exists a divisor $Y_1 \subset X_1$ such that $im(f_{[1]}) \subset Y_1$.

We obtain the following estimate for the vanishing order

$$t \geq rac{m(13\overline{c}_1^2 - 9\overline{c}_2)}{12\overline{c}_1^2}.$$

Proposition (El Goul)

Let (X, D) be a log surface of log general type with $Pic(X) = \mathbb{Z}$. Suppose that

$$m(13\overline{c}_1^2-9\overline{c}_2)>12t\overline{c}_1^2$$

then there exists a divisor $Y_1 \subset X_1$ such that $im(f_{[1]}) \subset Y_1$.

We obtain the following estimate for the vanishing order

$$t \geq rac{m(13\overline{c}_1^2 - 9\overline{c}_2)}{12\overline{c}_1^2}.$$

▶ We consider *P* as a holomorphic function on $\overline{J_2^v}(\mathbb{P}^2 \times \mathbb{P}^{N_d})_{U_d}$ and differentiate it with the meromorphic vector fields constructed before.

Proposition (El Goul)

Let (X, D) be a log surface of log general type with $Pic(X) = \mathbb{Z}$. Suppose that

$$m(13\overline{c}_1^2-9\overline{c}_2)>12t\overline{c}_1^2$$

then there exists a divisor $Y_1 \subset X_1$ such that $im(f_{[1]}) \subset Y_1$.

We obtain the following estimate for the vanishing order

$$t \geq rac{m(13\overline{c}_1^2 - 9\overline{c}_2)}{12\overline{c}_1^2}.$$

- ▶ We consider *P* as a holomorphic function on $\overline{J_2^v}(\mathbb{P}^2 \times \mathbb{P}^{N_d})_{U_d}$ and differentiate it with the meromorphic vector fields constructed before.
- We can find a vector field v such that dP(v) is a holomorphic jet differential vanishing on ample divisor and algebraically independent of P provided that

$$\frac{m(13\overline{c}_1^2-9\overline{c}_2)}{12\overline{c}_1^2}(d-3) > 7$$

・ 厚 ト ・ ヨ ト ・ ヨ ト ・ ヨ

► One can prove with some local computations that the weighted degree of the algebraic family of sections (P_a) m verifies m ≥ 6.

< ∃⇒

э

- ► One can prove with some local computations that the weighted degree of the algebraic family of sections (P_a) m verifies m ≥ 6.
- The previous numerical condition is verifed for $d \ge 14$.

- 米田 ト 三臣

< ∃ >

- ► One can prove with some local computations that the weighted degree of the algebraic family of sections (P_a) m verifies m ≥ 6.
- The previous numerical condition is verifed for $d \ge 14$.
- We get the algebraic degeneracy of the curve by a theorem of McQuillan-El Goul.

- 米田 ト 三臣