
Real singular Del Pezzo surfaces and threefolds
fibred by rational curves

F. Mangolte
(Joint work with F. Catanese, to appear in Michigan Math. J.)
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Algebraic varieties defined over R

Let X be a projective algebraic variety defined over R (possibly
singular)
Notation X := X (C) the set of complex points and X (R) the set
of real points, X (R) is the real part of X

If X nonsingular and X (R) 6= ∅

⇒

{
X and X (R) compact smooth manifolds
dimR(X (R)) = dimC(X )



Kod(X ) imposes restrictions on the topology of X (R)

A famous example in dimension 2

Theorem (Comessatti, 1914)

Suppose X be a nonsingular rational surface, then any orientable
connected component of X (R) is a sphere or a torus.



Du Val surfaces

X real projective surface with Du Val singularities.
x ∈ X (R) a singular point.
Classification over C = Dynkin diagrams Aµ, µ ≥ 1, Dµ, µ ≥ 4,
E6, E7, E8.
Over R, more possibilities.
Focus on two of them:
x is A+

µ ⇔ P real analytically equivalent to

x2 + y 2 − zµ+1 = 0, µ ≥ 1 ;

x is A−µ ⇔ P real analytically equivalent to

x2 − y 2 − zµ+1 = 0, µ ≥ 1 .

A+
1 real analytically isomorphic to A−1 ;



Weighted blow-up

Suppose X rational (= birational to P2).
No bound on the number of singular points on X (R).
Example: We can produce an arbitrarily high number of A−µ points
x2 − y 2 − zµ+1 = 0, µ ≥ 1 .
Blow-up a smooth point µ+ 1 times (the last blow-up gives the
(−1)-curve)

−2−2−1 −2

Contracting the µ (−2)-curves, we obtain a rational surface with a
A−µ real singular point



Topological normalization

Definition
Let V simplicial complex, Sing(V ) finite
n : V → V = unique proper continuous map s.t.

I n homeomorphism over V \ Sing(V )

I x ∈ Sing(V )⇒ n−1(x) one-to-one with connected
components of some punctured neighborhood of x in V .

If V is pure of dimension 2, then V is a topological manifold.

Definition
Let x ∈ X (R) be a singular point of type A±µ with µ odd.

X (R) has two connected components locally near x.
x is globally separating if these two local components are on
different connected components of X (R) and globally
nonseparating otherwise.



Main theorem

A weighted blow-up produces a globally nonseparating singular A−µ
point. Define

PX := Sing X \
{

x of type A−µ , µ even
}

\
{

x of type A−µ , µ odd and x is globally nonseparating
}

Theorem (Catanese and M–, 2007)

X rational Du Val surface defined over R, M ⊂ X (R) connected
component, then #(n−1(PX ) ∩M) ≤ 4.

I This result improves the bound given by Kollár in 1999:
#(n−1(PX ) ∩M) ≤ 6

I There are examples with #(n−1(PX ) ∩M) = 4.



Application on the topology of 3-folds

N 3-dimensional compact topological manifold without boundary

I N := Lens space ⇔ N = S3/Zm

I N := Seifert fibred manifold ⇔ ∃g : N → F , C∞-S1-fibration
locally trivial except near a finite number of multiple fibres

W → X real smooth projective threefold fibred by rational curves.
Suppose W (R) orientable.

Theorem (Kollár, 99)

1. A connected component N ⊂W (R) is essentially a Seifert
fibred manifold, or a connected sum of lens spaces.

2. Let k := k(N) be the number of multiple fibres in case Seifert
or the number of lens spaces. When X is rational, then k ≤ 6.



Real projective 3-fold fibred by rational curves

Theorem (Huisman and M–, 2005)

All the manifolds N as above do indeed occur as connected
component of the real part of a real smooth projective threefold
fibred by rational curves.

Answers two conjectures of Kollár.



Real rationally connected Threefolds

Theorem (Catanese and M–, 2007)

Suppose X rational.

I For each connected component N ⊂W (R), k(N) ≤ 4.

I if N admits a Seifert fibration over the torus S1 × S1. Then
k(N) = 0. Furthermore, X is then rational over R and W (R)
is connected.

Answers two Kollár’s conjectures.



Comessatti in dimension 3 ?

What essentially means ?
Let N be a closed 3-dimensional manifold. Take a decomposition
N = N ′#aP3(R)#b(S1 × S2) with a + b maximal. This
decomposition is unique by a theorem of Milnor.

Definition
N is essentially P if N ′ is P.

Conjecture (M–, fresh of the day)

Suppose X be a nonsingular rationally connected 3-dimensional
projective variety defined over R. Suppose that X (R) is orientable.
A connected component of X (R) is essentially spherical or
euclidean.
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