Real singular Del Pezzo surfaces and threefolds fibred by rational curves

F. Mangolte (Joint work with F. Catanese, to appear in Michigan Math. J.)

> Université de Savoie, Chambéry, France Universität Bayreuth, Germany

Aber Wrac'h, September 11, 2007

Algebraic varieties defined over ${\mathbb R}$

Let X be a projective algebraic variety defined over \mathbb{R} (possibly singular) Notation $X := X(\mathbb{C})$ the set of complex points and $X(\mathbb{R})$ the set of real points, $X(\mathbb{R})$ is the real part of X

If X nonsingular and $X(\mathbb{R}) \neq \emptyset$

$$\Rightarrow \begin{cases} X \text{ and } X(\mathbb{R}) \text{ compact smooth manifolds} \\ \dim_{\mathbb{R}}(X(\mathbb{R})) = \dim_{\mathbb{C}}(X) \end{cases}$$

 $\operatorname{Kod}(X)$ imposes restrictions on the topology of $X(\mathbb{R})$

A famous example in dimension 2

Theorem (Comessatti, 1914)

Suppose X be a nonsingular rational surface, then any orientable connected component of $X(\mathbb{R})$ is a sphere or a torus.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Du Val surfaces

X real projective surface with Du Val singularities. $x \in X(\mathbb{R})$ a singular point. Classification over \mathbb{C} = Dynkin diagrams A_{μ} , $\mu \ge 1$, D_{μ} , $\mu \ge 4$, E_6 , E_7 , E_8 . Over \mathbb{R} , more possibilities. Focus on two of them:

x is $A^+_{\mu} \Leftrightarrow P$ real analytically equivalent to

$$x^2+y^2-z^{\mu+1}=0,\;\mu\geq 1$$
 ;

x is $A^-_{\mu} \Leftrightarrow P$ real analytically equivalent to

$$x^2 - y^2 - z^{\mu+1} = 0, \ \mu \ge 1$$
.

 A_1^+ real analytically isomorphic to A_1^- ;

Weighted blow-up

Suppose X rational (= birational to \mathbb{P}^2). No bound on the number of singular points on $X(\mathbb{R})$. Example: We can produce an arbitrarily high number of A_{μ}^- points $x^2 - y^2 - z^{\mu+1} = 0, \ \mu \ge 1$. Blow-up a smooth point $\mu + 1$ times (the last blow-up gives the (-1)-curve)

Contracting the μ (-2)-curves, we obtain a rational surface with a A^-_{μ} real singular point

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Topological normalization

Definition

Let V simplicial complex, Sing(V) finite

 $\overline{n} \colon \overline{V} \to V = unique \text{ proper continuous map s.t.}$

- \overline{n} homeomorphism over $V \setminus Sing(V)$
- x ∈ Sing(V) ⇒ n⁻¹(x) one-to-one with connected components of some punctured neighborhood of x in V.

If V is pure of dimension 2, then \overline{V} is a topological manifold.

Definition

Let $x \in X(\mathbb{R})$ be a singular point of type A^{\pm}_{μ} with μ odd. $\overline{X(\mathbb{R})}$ has two connected components locally near x. x is globally separating if these two local components are on different connected components of $\overline{X(\mathbb{R})}$ and globally nonseparating otherwise.

Main theorem

A weighted blow-up produces a globally nonseparating singular A^-_μ point. Define

$$\mathcal{P}_X := \operatorname{Sing} X \setminus \{x \text{ of type } A^-_\mu, \ \mu \text{ even}\} \ \setminus \{x \text{ of type } A^-_\mu, \ \mu \text{ odd and } x \text{ is globally nonseparating}\}$$

Theorem (Catanese and M-, 2007)

X rational Du Val surface defined over \mathbb{R} , $M \subset \overline{X(\mathbb{R})}$ connected component, then $\#(\overline{n}^{-1}(\mathcal{P}_X) \cap M) \leq 4$.

This result improves the bound given by Kollár in 1999: #(n⁻¹(P_X) ∩ M) ≤ 6

• There are examples with $\#(\overline{n}^{-1}(\mathcal{P}_X) \cap M) = 4$.

Application on the topology of 3-folds

N 3-dimensional compact topological manifold without boundary

- N := Lens space $\Leftrightarrow N = S^3/\mathbb{Z}_m$
- N := Seifert fibred manifold ⇔ ∃g : N → F, C[∞]-S¹-fibration locally trivial except near a finite number of multiple fibres

 $W\to X$ real smooth projective threefold fibred by rational curves. Suppose $W(\mathbb{R})$ orientable.

Theorem (Kollár, 99)

- 1. A connected component $N \subset W(\mathbb{R})$ is essentially a Seifert fibred manifold, or a connected sum of lens spaces.
- 2. Let k := k(N) be the number of multiple fibres in case Seifert or the number of lens spaces. When X is rational, then $k \le 6$.

Real projective 3-fold fibred by rational curves

Theorem (Huisman and M-, 2005)

All the manifolds N as above do indeed occur as connected component of the real part of a real smooth projective threefold fibred by rational curves.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Answers two conjectures of Kollár.

Real rationally connected Threefolds

Theorem (Catanese and M–, 2007)

Suppose X rational.

- ▶ For each connected component $N \subset W(\mathbb{R})$, $k(N) \leq 4$.
- if N admits a Seifert fibration over the torus S¹ × S¹. Then k(N) = 0. Furthermore, X is then rational over ℝ and W(ℝ) is connected.

Answers two Kollár's conjectures.

Comessatti in dimension 3 ?

What essentially means ?

Let N be a closed 3-dimensional manifold. Take a decomposition $N = N' \#^a \mathbb{P}^3(\mathbb{R}) \#^b(S^1 \times S^2)$ with a + b maximal. This decomposition is unique by a theorem of Milnor.

Definition

N is essentially \mathcal{P} if N' is \mathcal{P} .

Comessatti in dimension 3 ?

What essentially means ?

Let N be a closed 3-dimensional manifold. Take a decomposition $N = N' \#^a \mathbb{P}^3(\mathbb{R}) \#^b(S^1 \times S^2)$ with a + b maximal. This decomposition is unique by a theorem of Milnor.

Definition

N is essentially \mathcal{P} if N' is \mathcal{P} .

Conjecture (M–, fresh of the day)

Suppose X be a nonsingular rationally connected 3-dimensional projective variety defined over \mathbb{R} . Suppose that $X(\mathbb{R})$ is orientable. A connected component of $X(\mathbb{R})$ is essentially spherical or euclidean.