Université de Bretagne Occidentale UFR Sciences et Techniques L3 DE MATHEMATIQUES

GROUPES ET GEOMETRIE

Examen terminal, le 9 mai 2018, 8h00-11h00

Documents et calculatrices interdits.

Exercice 1. Rappelons que le groupe alterné A_4 est le sous-groupe de S_4 des permutations paires.

- a. Déterminer les types de permutations appartenant à A_4 .
- b. En déduire les ordres d'éléments de A_4 .

Dans la suite on considère l'action par conjugaison de A_4 sur lui-même, action qu'on notera \star . Rappelons que deux éléments conjugués d'un groupe ont même ordre. Soit τ la double transposition (12)(34), et σ la permutation (123) de A_4 .

- c. Calculer le conjugué $(123) \star \tau = (123) \cdot \tau \cdot (123)^{-1}$ de τ .
- d. En déduire que l'orbite $A_4 \star \tau$ de τ est de cardinal au moins 3.
- e. En déduire que tous les éléments d'ordre 2 de A_4 sont conjugués dans A_4 .
- f. Montrer que σ appartient au stabilisateur $(A_4)_{\sigma}$ de σ pour l'action de A_4 sur lui-même par conjugaison.
- g. En déduire que l'ordre du groupe $(A_4)_{\sigma}$ est un multiple de 3 supérieur ou égal à 3.
- h. En déduire que σ possède au plus 4 conjugués dans A_4 .
- i. Calculer le conjugué $(124) \star \sigma = (124) \cdot \sigma \cdot (124)^{-1}$ de σ dans A_4 .
- j. En déduire que σ possède au moins 3 conjugués dans A_4 .
- k. Déduire des questions g et j que σ possède exactement 4 conjugués dans A_4 .
- l. Déterminer l'ensemble quotient $A_4/(A_4)_{\sigma}$ du groupe A_4 par le sous-groupe $(A_4)_{\sigma}$ agissant sur A_4 par translations à droite.
- m. En déduire les conjugués de σ dans A_4 .

Soit α l'automorphisme de S_4 défini par $\alpha(\gamma) = (12)\gamma(12)^{-1}$.

- n. Montrer que $\alpha(A_4) = A_4$, et que la restriction β de α à A_4 est un automorphisme de A_4 .
- o. Déduire des questions k et n que la permutation $\sigma' = (2\,1\,3)$ de A_4 possède également 4 conjugués dans A_4 .
- p. En déduire que l'ensemble des éléments de A_4 d'ordre 3 est la réunion disjointe de deux classes de conjugaison.
- q. Déduire, des questions b, e et p, les classes de conjugaison de A_4 et le cardinal de chacune.

Rappelons qu'un sous-groupe d'un groupe G est distingué si et seulement s'il est réunion de classes de conjugaison de G.

r. Déduire de la question q que le seul sous-groupe distingué non trivial de A_4 est le sous-groupe "des doubles transpositions"

$$\{id, (12)(34), (13)(24), (14)(23)\}.$$

Exercice 2. Soit G un groupe. Rappelons que le centre de G est le sous-groupe distingué Z(G) de G défini par

$$Z(G) = \{ g \in G \mid \forall h \in G \colon gh = hg \}.$$

Soit α un automorphisme de G.

a. Montrer que $\alpha(Z(G)) = Z(G)$.

Soit G/Z(G) le groupe quotient et $\pi\colon G\to G/Z(G)$ le morphisme de passage au quotient.

b. Montrer qu'il existe un unique morphisme de groupes

$$\bar{\alpha} \colon G/Z(G) \to G/Z(G)$$

tel que $\bar{\alpha} \circ \pi = \pi \circ \alpha$. (Indication : appliquer la propriété universelle du quotient au morphisme $\pi \circ \alpha$.)

c. Montrer que $\bar{\alpha}$ est un isomorphisme.

Barème sur 20 points:

Exercice 1	15 pts
Exercice 2	5 pts