Arithmétique et applications - L3 - MI

UBO - 25 juin 2009 examen - durée : 3 heures

Tout document manuscrit ou imprimé, téléphone portable, ordinateur personnel interdit.

Partie I

Exercice I : une équation diophantienne

Le but de cet exercice est de trouver tous les triplets d'entiers (x,y,z) vérifiant :

$$1009x + 345y + 56z = 1.(*)$$

- 1. Donner toutes les solutions entières de 1009x + 345y = 1 puis de 1009x + 345y = a, a étant quelconque dans \mathbb{Z} .
- 2. Donner une solution particulière de (*).
- 3. Servez-vous de la solution particulière que vous venez de trouver pour décrire toutes les solutions de (*).

Exercice II : le test n-1

On décrit ici un test de primalité que l'on appliquera ensuite aux nombres de Fermat. n est un entier naturel strictement plus grand que 2.

- 1. Rappeler pour quoi l'ordre de tout élément a de $\mathcal{U}(\frac{\mathbb{Z}}{n\mathbb{Z}})$ divise $\varphi(n).$
- 2. On suppose que l'on a trouvé un entier a tel que $a^{n-1} \equiv 1 \mod n$ et tel que pour tout diviseur premier q de n-1 on a :

$$a^{\frac{n-1}{q}} \not\equiv 1 \bmod n.$$

- (a) Montrer que l'ordre de a est n-1.
- (b) En déduire que $n-1=\varphi(n)$ puis que n est premier.
- 3. Réciproquement, montrer que si n est premier, alors il existe un entier a, tel que $a^{n-1} \equiv 1 \mod n$ et tel que pour tout diviseur premier q de n-1 on a :

$$a^{\frac{n-1}{q}} \not\equiv 1 \bmod n.$$

4. On rappelle que le k-ième nombre de FERMAT est le nombre $F_k = 2^{2^k} + 1$. Montrer que F_k est premier si et seulement si il existe un nombre entier a tel que

$$a^{\frac{F_k-1}{2}} \equiv -1 \bmod F_k.$$

5. Par exemple, montrer par cette méthode que $F_4 = 65537$ est premier. a étant choisi, quel est le coût binaire au pire de ce test de primalité de F_k en fonction de k?

Partie II

Exercice III

Soit f le polynôme dans $\mathbb{Z}[X]$ défini par $f(X) = X^4 - 2X^2 + 9$. Le but de cet exercice est de démontrer que le polynôme f est réductible modulo tout nombre premier p, mais irréductible dans $\mathbb{Q}[X]$.

- 1. Montrer que f n'admet pas de racine dans \mathbb{Q} .
- 2. Montrer que si g divise f dans $\mathbb{Q}[X]$, alors g(-X) le divise également.
- 3. En déduire que f est irréductible dans $\mathbb{Q}[X]$.
- 4. Montrer que f est réductible dans $\mathbb{F}_2[X]$.
- 5. Soit p un nombre premier impair tel qu'il existe $\delta \in \mathbb{F}_p$ avec $\delta^2 = -32$ dans \mathbb{F}_p . Montrer que le polynôme $x^2 2x + 9$ est réductible dans $\mathbb{F}_p[X]$.
- 6. En déduire que f est réductible dans $\mathbb{F}_p[X]$ lorsque p est un nombre premier impair tel qu'il existe $\delta \in \mathbb{F}_p$ avec $\delta^2 = -32$ dans \mathbb{F}_p .

Dans la suite, p désignera un nombre premier impair pour lequel il n'existe pas de $\delta \in \mathbb{F}_p$ avec $\delta^2 = -32$ dans \mathbb{F}_p .

- 7. Montrer qu'il existe un élément $\beta \in \mathbb{F}_{p^2}$ tel que $\beta^2 = -1.$
- 8. Montrer qu'il existe un élément $\gamma \in \mathbb{F}_{p^2}$ tel que $\gamma^2 = 2$
- 9. Montrer que $\alpha = \beta + \gamma$ est une racine de f dans \mathbb{F}_{p^2} .
- 10. En déduire que f est réductible dans $\mathbb{F}_p[x]$ lorsque p est un nombre premier impair pour lequel il n'existe pas de $\delta \in \mathbb{F}_p$ avec $\delta^2 = -32$.

Exercice IV

Soit
$$m(X) = X^6 + X^5 + X^4 + X^2 + 1 \in \mathbb{F}_2[X]$$
.

- 1. Montrer que m est irréductible dans $\mathbb{F}_2[X]$.
- 2. Soit $K = \mathbb{F}_2[X]/m$, et notons $\alpha = X \mod m$. Quel est le cardinal de K?
- 3. Montrer que l'élément α de K^{\star} n'est pas générateur.
- 4. Déterminer un générateur β de K^* .
- 5. Déterminer les sous-corps de K.
- 6. Pour chaque sous-corps L de K, préciser un générateur de L^* .