Université de Bretagne Occidentale UFR Sciences et Techniques LICENCE PARCOURS 1

ALGEBRE ET GEOMETRIE

Contrôle continu, le 21 novembre 2013, 13h30-14h00 CORRIGE

Exercice 1. Dressons une table de vérité :

A	В	C	$B \operatorname{et} C$	A ou (B et C)	A ou B	A ou C	(A ou B) et (A ou C)
F	F	F	F	F	F	F	F
F	F	Γ	F	F	F	Т	F
F	Т	F	F	F	T	F	F
F	Γ	Γ	Т	m T	Т	T	T
Τ	F	F	F	m T	T	T	T
Τ	F	Т	F	m T	T	T	T
T	Γ	F	F	m T	Γ	Γ	T
T	T	Γ	Т	m T	Γ	Γ	T

Comme les colonnes 5 et 8 coïncident, les assertions A ou $(B ext{ et } C)$ et $(A ext{ ou } B)$ et $(A ext{ ou } C)$ sont bien équivalentes.

Exercice 2. Soit A(x, y) l'assertion «y est la mére de x,» portant sur l'ensemble des êtres humains. Comme tout être humain a une mère, l'assertion

$$\forall x \colon \exists y \colon A(x,y)$$

est vraie. Par contre, l'assertion

$$\exists y \colon \forall x \colon A(x,y)$$

voudrait dire qu'il existe un être humain qui est mère de tous les êtres humains ce qui est évidemment faux. Les deux assertions ne sont donc pas équivalentes.

Exercice 3. a. On a bien $\mathcal{P}(E \cap F) = \mathcal{P}(E) \cap \mathcal{P}(F)$. Montrons les deux inclusions.

 \subseteq : Soit $A \in \mathcal{P}(E \cap F)$. Cela veut dire que A est un sous-ensemble de l'intersection $E \cap F$. Comme $E \cap F$ est un sous-ensemble de E et de F, A est à la fois un sous-ensemble de E et de F. Du coup, $A \in \mathcal{P}(E)$ et $A \in \mathcal{P}(F)$, ce qui implique que $A \in \mathcal{P}(E) \cap \mathcal{P}(F)$.

- \supseteq : Soit $A \in \mathcal{P}(E) \cap \mathcal{P}(F)$. On a donc $A \in \mathcal{P}(E)$ et $A \in \mathcal{P}(F)$. Cela veut dire que A est un sous-ensemble de E et de F. Il s'ensuit que A est un sous-ensemble de $E \cap F$, i.e., $A \in \mathcal{P}(E \cap F)$.
- b. En général, $\mathcal{P}(E \cup F) \neq \mathcal{P}(E) \cup \mathcal{P}(F)$. En effet, soit $E = \{0\}$ et $F = \{1\}$. Soit $A = E \cup F = \{0, 1\}$. On a bien-sûr $A \in \mathcal{P}(E \cup F)$, mais A n'est ni un sous-ensemble de E ni de F, i.e., $A \notin \mathcal{P}(E) \cup \mathcal{P}(F)$.