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Voorwoord

Dit proefschrift is voortgekomen uit het onderzoek dat ik als assi-
stent in opleiding bij de faculteit der Wiskunde en Informatica van de
Vrije Universiteit te Amsterdam onder leiding van J. Bochnak gedaan
heb. Hij was het die mij meetkunde, in het bijzonder reële alge-
bräısche meetkunde, leerde. Ik wil hem daarvoor uitdrukkelijk be-
danken. Verder denk ik met veel plezier terug aan de enthousiaste
wijze waarop hij met mij discussiëerde over wiskunde en aan de vrij-
heid die hij mij gaf bij de keuze van het onderwerp van mijn onderzoek.
Vooral dat laatste heeft er veel aan bijgedragen dat ik het, toen nog
maagdelijke, terrein van de onderliggende reële algebräısche structuur
van algebräısche variëteiten over C betrad.

Verder wil ik F. Oort bedanken voor de grote belangstelling die hij
in mijn onderzoek heeft getoond. Onze plezierige gesprekken gingen,
vooral in het begin, gepaard met hevige spraakverwarringen (wat die
gesprekken overigens niet minder plezierig maakte) als gevolg van het
feit dat er twee verwante èn totaal verschillende vakgebieden bij be-
trokken waren. De invloed op dit proefschrift die hiervan uitging is
groot. Voorts bedank ik hem voor de suggestie, na het bestuderen van
de onderliggende reële algebräısche structuur van elliptische krommen
over C, die structuur van abelse variëteiten over C met voldoende veel
complexe vermenigvuldigingen te bestuderen.

Ik wil E. Becker bedanken voor het feit dat hij referent van dit
proefschrift wilde zijn en voor het geduld dat hij had bij de vertraging
die ontstond tijdens de voltooiing van het manuscript.

Ik bedank de faculteit der Wiskunde en Informatica voor de aan-
gename sfeer waarin ik heb kunnen werken, en daarbij denk ik ook
aan het AIO-boekenbudget en de subsidieregeling voor de aanschaf van
computer-apparatuur.
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Voorts denk ik met veel plezier terug aan de animerende discussies
die ik had met Ira Helsloot, en dan vooral de discussies ten tijde van
ons 2-koppig seminarium.

Jeroen Warmerdam bedank ik voor de buitengewoon zorgvuldige
wijze, die hem zo eigen is, waarop hij het manuscript doorgelezen heeft.
Het is daarbij zeker niet beperkt gebleven tot “type-checking”!

Johan Huisman
Amsterdam, juli 1992
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Introduction

In real algebraic geometry one essentially studies affine real algebraic
varieties. (Projective real algebraic varieties are affine [2, Théorè-
me 3.4.4].) An affine real algebraic variety is a subset V of Rn given by
polynomial equations. An interesting problem is the question of real-
izability of Z/2Z-homology classes by real algebraic subvarieties. More
precisely, let V ⊆ Rn be an affine real algebraic variety which is com-
pact with respect to the strong topology (=Euclidean topology) and
let

c ∈ Hi(V,Z/2Z)

be an element of the ith homology group of V with coefficients in Z/2Z.
Then, c is realizable by a real algebraic subvariety of V if there exists
an i-dimensional real algebraic subvariety W of V such that the Z/2Z-
homology class

[W ] ∈ Hi(V,Z/2Z)

determined by W [2, p. 235] is equal to c. The subgroup of elements of
Hi(V,Z/2Z) that are realizable by a real algebraic subvariety is denoted
by

Halg
i (V,Z/2Z).

The problem then is to determine this group.
We will solve this problem in the case i = dimV − 1 (cf. Theo-

rem 89) for a large class of affine real algebraic varieties, namely the
class of real abelian varieties. (A real abelian variety is a real algebraic
group admitting a complete complexification which is itself an algebraic
group.) In particular, we will prove in Chapter 2, among other things,
that

(0) 6= Halg
d−1(V,Z/2Z) 6= Hd−1(V,Z/2Z),

5



6 10INTRODUCTION

for any real abelian variety V of dimension d > 1, which is not con-
nected with respect to the strong topology (Corollary 93).

Other questions which we will study are concerned with the under-
lying real algebraic structure of algebraic varieties over C. Briefly, if X
is an algebraic variety over C then, using the identification of Cn with
R2n, there exists a canonical structure of a real algebraic variety on X,
called the underlying real algebraic structure of X and denoted by RX.
Obviously, the dimension of the real algebraic variety RX is twice the
dimension of X, that is, dim RX = 2 dimX.

In the last section of Chapter 2 we will study realizability of Z/2Z-
homology classes of the underlying real algebraic structure of elliptic
curves over C with complex multiplication, i.e. we will study the group
Halg

1 (RE,Z/2Z), where E is a elliptic curve over C such that its ring
of endomorphisms End(E) is not equal to Z. In [6] it has been proved

that the Z/2Z-dimension of Halg
1 (RE,Z/2Z) is equal to 2 if and only

if the discriminant d of End(E) is odd, is equal to 1 if d is even and
d 6= 8d, with d odd, and is equal to 0 or 1 in the remaining cases (that
is, d = 8d, with d odd). The question rose whether the Z/2Z-dimension

of Halg
1 (RE,Z/2Z) is equal to 0 or to 1 in these remaining cases. In

Section 2.7 we will answer this question and present a different proof
of the results mentioned above. More precisely, we will show that

dimZ/2ZH
alg
1 (RE,Z/2Z) =

{
2, if d is odd,
1, if d is even,

whenever E is an elliptic curve over C with complex multiplication.
Particularly interesting is the fact that in the case d = 8d, with d odd,
the nonzero homology class in Halg

1 (RE,Z/2Z) is not realizable by a
real elliptic curve, while in the other cases all nonzero homology classes
in Halg

1 (RE,Z/2Z) are realizable by a real elliptic curve.
Another interesting problem is classification of the underlying real

algebraic structure of algebraic varieties over C. The case of elliptic
curves over C has been solved [14]. In particular, for any elliptic curve
E over C with complex multiplication the following is proved in [14].
The number ρ(RE) of (isomorphism classes of) algebraic varieties F
over C such that RF is isomorphic to RE is equal to the class number
h(End(E)) of the ring End(E). In Chapter 3, this will be generalized
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to abelian varieties over C having sufficiently many complex multipli-
cations (Theorem 137).

A related problem is the problem of the product structure of a
simple abelian variety over C. Let us explain this. It is well known that,
for any abelian variety X over C of dimension n, the set of complex
points X(C) of X is topologically isomorphic to (S1)2n, where S1 is the
topological circle. Hence, at least topologically, X is the product of
two real algebraic varieties. The problem of the product structure of
a simple abelian variety X over C is the question whether there exist
real algebraic varieties X1 and X2 of positive dimension, such that

RX
∼= X1 ×X2,

as real algebraic varieties.
The problem of the product structure of elliptic curves over C has

been solved in [5]. There, it is proved that an elliptic curve E over C

has product structure if and only if E has complex multiplication and
the discriminant of the ring End(E) of endomorphisms of E is odd (see
Corollary 100). In Chapter 3, we will generalize this to a large class
of simple abelian varieties over C having sufficiently many complex
multiplications (Theorem 140).

An important notion in real algebraic geometry is that of a com-
plexification. All our proofs of the statements mentioned above make
use of this notion. Classically, a complexification of a real algebraic va-
riety V ⊆ Rn (or V ⊆ Pn(R)) is the algebraic variety over C in Cn (or
Pn(C)) given by the same equations as V . In terminology of schemes,
a complexification of a real algebraic variety V is just a geometrically
reduced separated scheme X over R of finite type such that the set of
real points X(R) of X is isomorphic to V , as a real algebraic variety.
We will take the latter characterization as definition of a complexifi-
cation (see Definition 11). Although a real algebraic variety does not
have a canonical complexification in general, we will prove in Chapter 2
that every real algebraic group does have a canonical complexification
(Theorem 79).

The fact that the Weil restriction of an irreducible algebraic variety
X over C with respect to the field extension C/R is a complexification
of the underlying real algebraic structure RX of X (Theorem 29) will
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play an important role in the study of the underlying real algebraic
structure of algebraic varieties over C.

The reader is refered to the book [2] for more details on real algebraic
geometry and to [13] or [24] for more details on algebraic geometry in
general.



Conventions and notation

If C is a category and X and Y are objects in C then the set of mor-
phisms from X into Y will be denoted by HomC(X, Y ), or Hom(X, Y )
when no confusion is likely to occur. If X = Y then this set is denoted
by EndC(X) or End(X). Furthermore, X ∼=C Y or X ∼= Y means X is
isomorphic to Y .

An action of a group G on a set X will always be a left action,
unless stated otherwise. The set of fixed points of G is denoted by XG,
that is,

XG = {x ∈ X | σx = x, for every σ ∈ G}.
If we also have an action of G on the set Y , then a mapping f :X → Y
is called G-equivariant if

f(σx) = σf(x),

for every x ∈ X and σ ∈ G.
A module over a ring will always be a left module, unless stated

otherwise.
If (X,OX) and (Y,OY ) are locally ringed spaces then, for every mor-

phism f :X → Y of locally ringed spaces, the corresponding morphism
of sheaves

OY −→ f?OX

will be denoted by f#.
We will use the symbol � to denote restriction.

9
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Chapter 1

Generalities

In this chapter we define the notion of a real algebraic variety. This
definition is essentially the same as [2, Définition 3.2.11] and has the ad-
vantage that, whenever X is a geometrically reduced separated scheme
over R of finite type such that the set of real points X(R) of X is dense
inX, the spaceX(R) together with the restriction of the structure sheaf
of X to X(R) is a real algebraic variety (Proposition 8). In Section 1.2
we recall some facts concerning realizability of homology classes by real
algebraic subvarieties and in Section 1.3 we recall the basic fact of the
theory of descent, which we will need in Section 2.4 and in Section 1.4.
The latter section is devoted to the Weil restriction. The last section
of this chapter, Section 1.5, is concerned with the underlying real alge-
braic structure of algebraic varieties over C. In this section it will be
proved that the Weil restriction of an irreducible algebraic variety X
over C is a complexification of the underlying real algebraic structure

RX of X (Theorem 29).

1.1 Real algebraic geometry vs. algebraic
geometry over the reals

Let us define the notion of a real algebraic variety (cf. [2]).
A subset V of the n-fold cartesian product Rn of R is an algebraic set

if there exist polynomials Fi, i ∈ I, in the polynomial ring R[X1, . . . , Xn]
such that

V = {x ∈ Rn | ∀i ∈ I:Fi(x) = 0}.

11



12 10CHAPTER 1. GENERALITIES

Clearly, the algebraic subsets of Rn determine a topology on Rn such
that the closed sets are precisely the algebraic sets. This topology
is called the Zariski topology. Any algebraic subset V of Rn will be
given the induced topology. Again, this topology is called the Zariski
topology.

Let U be an open subset of the algebraic subset V of Rn. A real-
valued function f :U → R will be called regular on U if, for every x ∈ U ,
there exist polynomials p, q ∈ R[X1, . . . , Xn] such that q does not vanish
on a neighbourhood U ′ ⊆ U of x and

f(y) =
p(y)

q(y)
,

for every y ∈ U ′. Denote the R-algebra of regular functions on U by
RV (U). Obviously, RV is a sheaf on V , the sheaf of regular functions
on V .

Remark 1. It follows from [2, Proposition 3.2.3] that, whenever V ⊆
Rn is an algebraic set and U is an open subset of V , for every regular
function f on U there exist polynomials p, q ∈ R[X1, . . . , Xn] such that
q does not vanish on U and

f(y) =
p(y)

q(y)
,

for every y ∈ U . �

Observe that (V,RV ) is a locally ringed space [13, p. 72] and RV is
a sheaf of R-algebras. Let us call a locally ringed space (X,OX), where
OX is a sheaf of R-algebras, an R-space. If X and Y are R-spaces, a
morphism f :X → Y of locally ringed spaces is a morphism of R-spaces
if

f#:OY −→ f?OX

is a morphism of sheaves of R-algebras on Y . With the obvious com-
position of morphisms, we get the category of R-spaces.

Definition 2. An R-space X is an affine real algebraic variety if X is
isomorphic to (V,RV ), for some algebraic set V . A pre-real algebraic
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variety is an R-space X such that there exists a finite open covering
{Ui} of X such that the R-spaces (Ui,OX�Ui

) are affine real algebraic
varieties.

Observe that the category of pre-real algebraic varieties has finite
products. Therefore we can define the diagonal ∆ ⊆ X × X, if X is
a pre-real algebraic variety. Namely, ∆ is the image of X under the
morphism < idX , idX>:X → X ×X.

A pre-real algebraic variety X is called separated if ∆ is closed in
X ×X.

Definition 3. A real algebraic variety is a separated pre-real algebraic
variety. A morphism from a real algebraic variety X into a real alge-
braic variety Y is just a morphism from the R-space X into the R-space
Y . The dimension of a real algebraic variety is the Krull dimension of
the underlying topological space.

This definition of a real algebraic variety is only slightly different
from [2, Définition 3.2.11]. Fortunately, the two definitions give rise to
equivalent categories, as can be seen easily. Moreover, definitions and
properties from [2] concerning real algebraic varieties apply to our real
algebraic varieties.

Observe that the dimension of a real algebraic variety in the sense
of [2] is equal to the dimension in our sense. In particular, if X is an
irreducible real algebraic variety, the dimension dimX of X is equal to
the transcendence degree over R of the function field of X.

Remark 4. Let X be a real algebraic variety. Clearly, every open
subset U of X has an induced structure of a real algebraic variety.
Furthermore, every closed subset C of X has a unique structure of a
real algebraic variety such that the inclusion i:C → X extends to a
morphism of real algebraic varieties. Hence, every locally closed subset
Y of X has an induced structure of a real algebraic variety. �

Example 5. An open subset U of an affine real algebraic variety V ⊆
Rn is affine. Indeed, V −U is closed in Rn. Hence, there is an ideal I of
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R[X1, . . . , Xn] which has as vanishing set V − U . Since R[X1, . . . , Xn]
is Noetherian, there exist F1, . . . , Fm ∈ I which generate I. Put

F =
m∑

i=1

F 2
i .

Then,
V ′ = {(x, t) ∈ Rn × R | x ∈ V and tF (x) = 1}

is an affine real algebraic variety isomorphic to U . �

Observe that, if V is an affine real algebraic variety, V has a topol-
ogy induced by the Euclidean topology, called the strong topology. Of
course, if X is an arbitrary real algebraic variety then X has a topology
generated by the strong topologies on all open affine subsets. Again,
this topology is called the strong topology. We will denote this topo-
logical space associated to the real algebraic variety X by Xs.

Definition 6. An algebraic variety over a field K is a geometrically
reduced, separated scheme over K, which is of finite type over K.

Let us mention explicitly that, according to Definitions 3 and 6, we
have made distinction between “real algebraic varieties” and “algebraic
varieties over R”.

Remark 7. Suppose X is an algebraic variety over K. An open subset
U of X becomes an algebraic variety over K by taking the restriction of
the structure sheaf OX of X to U . A closed subset of X will always be
given the reduced induced closed subscheme structure, when considered
as an algebraic variety over K.

Combining these facts, every locally closed subset Y of X has the
structure of an algebraic variety over K. Moreover, the inclusion map-
ping i:Y → X extends to a morphism of algebraic varieties over K. �

If X is a scheme over a field K and L/K is a field extension, then
an L-rational point of X is a morphism

x: SpecL −→ X
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of schemes over K. The set of L-rational points of X will be denoted
by X(L).

In the special case that L = K, the set X(K) of K-rational points
can be considered to be a subset of X in a canonical way. For, a K-
rational point is a morphism x: SpecK → X of schemes over K and
the image of (0) ∈ SpecK is uniquely determined by x.

If X is a scheme over R, let us denote the R-space (X(R),OX�X(R))
by R(X), called the real part of X.

Proposition 8. If X is an algebraic variety over R with its set of real
points X(R) dense in X then the real part R(X) of X is a real algebraic
variety.

Proof. Let us first prove the statement for affine varieties. That is, we
first prove that, if X = SpecA, where A = R[X1, . . . , Xn]/I and I is
an ideal of R[X1, . . . , Xn], the real part R(X) of X is a real algebraic
variety.

Let V be the vanishing set of I in Rn, that is,

V = V (I) = {x ∈ Rn | ∀F ∈ I:F (x) = 0}
and let I ′ ⊆ R[X1, . . . , Xn] be the vanishing ideal of V , that is,

I ′ = I (V) = {F ∈ R[X1, . . . , Xn] | ∀x ∈ V :F (x) = 0}.
We claim that I ′ = I.

Obviously, I is contained in I ′. Put A′ = R[X1, . . . , Xn]/I
′ and

X ′ = SpecA′ and let ϕ:A→ A′ be the canonical mapping. Then,

Specϕ:X ′ −→ X

is a closed immersion and X(R) is contained in the image of Specϕ.
Since X(R) is dense, Specϕ is a homeomorphism. In particular, I ′ is
the radical ideal of I [16, p. 23]. Since X is reduced, I is its own radical
ideal. Therefore I ′ = I.

Now we will prove that the real part R(X) of X is isomorphic to
(V,RV ). Define the mapping

f :V −→ X(R)

x 7−→ mx,
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where mx is the maximal ideal of A generated by X1 − x1, . . . , Xn − xn

and x = (x1, . . . , xn). Clearly, f is a homeomorphism. The local ring
of mx in R(X) is equal to the local ring of mx in X and is Amx

. Define
a morphism of local rings

f#
x :Amx

−→ RV,x

by considering an element of Amx
as a regular real-valued function in a

neighbourhood of x in V . This is well defined since every polynomial
F ∈ I vanishes on V and every element a ∈ A−mx is nonzero in x.

Let us prove that f is an isomorphism of R-spaces. Since f#
x is

clearly surjective for every x ∈ V , it suffices to show injectivity of f#
x .

Suppose p ∈ A, q ∈ A−mx and f#
x (p/q) = 0 in RV,x. In particular, p

vanishes in a neigbourhood of x in V . Hence, there exists a polynomial
F ∈ R[X1, . . . , Xn] such that F (x) 6= 0 and Fp vanishes on V . This
shows that Fp is an element of I. Furthermore, the image a of F in A
is not contained in mx and ap = 0 in A. Therefore, p/q = 0 in Amx

and
f#

x is injective. This proves that f is an isomorphism.
To prove the theorem for an arbitrary algebraic variety X over R,

it suffices to show that the pre-algebraic variety R(X) is separated.
Observe that

R(X ×X) ∼= R(X) ×R(X)

and, under this isomorphism, the diagonal ∆R(X) ⊆ R(X) × R(X)
corresponds to ∆X ∩R(X ×X). Since X is separated, ∆X is closed in
X ×X. Therefore, ∆X ∩R(X ×X) is closed in R(X ×X) and R(X)
is separated. �

In categorical language, R is a functor from the category of algebraic
varieties over R with dense sets of real points into the category of real
algebraic varieties.

Observe that, the real part R(U) of U is canonically isomorphic to
R(X), if U is an open subset of the algebraic variety X over R such
that U contains the set of real points X(R) of X.

We sometimes refer to the real part R(X) of X by just writing
X(R).

Example 9. As usual, the n-dimensional affine scheme

SpecA[X1, . . . , Xn]
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over a ring A is denoted by An
A, the n-dimensional projective space

ProjA[X0, . . . , Xn]

over a ring A is denoted by Pn
A . If A = Z, we write just An (resp. Pn)

instead of An
Z (resp. Pn

Z ).
Both An

R and Pn
R are algebraic varieties over R. Their real parts

An
R(R) = Rn and Pn

R (R) = Pn(R) are real algebraic varieties, by Theo-
rem 8. Of course, these structures of real algebraic varieties on Rn and
Pn(R) coincide with the usual structures. �

Remark 10. An important class of algebraic varieties X over R, such
thatX(R) is dense in X, is the class of nonsingular irreducible algebraic
varieties X over R with X(R) nonempty [31, p. 8]. �

Definition 11. A complexification of a real algebraic variety X is a
pair (Y, i) consisting of an algebraic variety Y over R, having its set of
real points Y (R) dense in Y , and an isomorphism i:X → R(Y ) of real
algebraic varieties.

It is clear that the dimension of X is equal to the dimension of Y ,
whenever Y is a complexification of X.

Observation 12. Complexifications play an important role in the study
of real algebraic varieties because of the following property. Let X
be a real algebraic variety and suppose (Y, i) is a complexification of
X. Then, for every algebraic variety Y ′ over R and every morphism
f :X → R(Y ′) of R-spaces, there exists a unique rational mapping

g:Y −−→ Y ′,

such that the domain dom g of g contains the set of real points Y (R)
of Y and the diagram

R(Y )

X

R(Y ′)
6
i

���������*

f

-R(g)
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commutes.
To prove this, one may assume both Y and Y ′ affine. Then we have

to extend the morphism

h = f ◦ i−1:R(Y ) −→ R(Y ′)

to a morphism on some open subset U of Y .
Choose generators a1, . . . , an of Γ(Y ′,OY ′) as an R-algebra. Then,

the image under h# of the restriction of ai to Y ′(R) is the restriction
to Y (R) of some bi ∈ Γ(Ui,OY ), for some open affine subset Ui of Y
containing Y (R). Then, Ui is dense in Y and every bi can be considered
as a rational function. Observe that, since Y (R) is dense in Y , each bi is
uniquely determined as a rational map by ai. Let U be the intersection
of all Ui. Then, again since Y (R) is dense in Y , the assignment ai 7→ bi|U
extends to a morphism of R-algebras

ϕ: Γ(U,OY ) −→ Γ(Y ′,OY ′).

Now, g = Specϕ:U → Y ′ extends h and is uniquely determined as a
rational mapping Y −−→ Y ′. �

The preceding observation shows that complexifications are unique
up to birational equivalence. That is, if Y and Y ′ are complexifica-
tions of the real algebraic variety X, then Y and Y ′ are birationally
equivalent. In particular, if a real algebraic variety X has a complexi-
fication (Y, i), birational invariants of Y are, in fact, invariants of the
real algebraic variety X.

As an example, the genus of a nonsingular irreducible real algebraic
curve C is defined and is an invariant of C. For, let D be a nonsingular
complete complexification of C. Then, the genus g(D) of D does not
depend on D and will be called the genus of C. Clearly, if the non-
singular geometrically irreducible real algebraic curves C and C ′ are
isomorphic then both genera are equal.

Remark 13. It is clear that a real algebraic variety X of positive di-
mension does not have a “minimal” complexification, that is, there
does not exist an algebraic variety Y over R with Y (R) dense in Y
and R(Y ) isomorphic to X such that for every algebraic variety Y ′
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over R and every morphism f :X → R(Y ′) of R-spaces, there exists a
unique morphism g from Y into Y ′ which makes the diagram on page 17
commutative. However, if the real algebraic variety X has a complexi-
fication then one can construct a seperated reduced scheme S over R,
together with an isomorphism of R-spaces

j:X → R(S)

such that for every algebraic variety Y ′ over R and every morphism
f :X → R(Y ′) of R-spaces, there exists a unique morphism g of schemes
over R from S into Y ′ which makes the diagram

R(S)

X

R(Y ′)
6
j

���������*

f

-R(g)

commutative. For, if (Y, i) is a complexification of X then one defines

S = {P ∈ Y | {P} ∩ Y (R) 6= ∅}.

One makes the subset S of Y into a scheme by taking as the structure
sheaf on S the restriction of the structure sheaf of Y . Since R(S) =
R(Y ), the mapping i fromX into R(Y ) is at the same time a mapping j
from X into R(S). One can check that (S, j) has the required property.
Moreover, (S, j) is unique up to isomorphism.

Let us call the scheme S over R, when it exists, the real scheme
associated to X. Of course, S is not of finite type over R, in general.

In the case that X is an affine real algebraic variety, S is just the
scheme over R

S = Spec Γ(X,RX),

where RX is the sheaf of regular functions on X. �

Remark 14. Observe that, when Y is an algebraic variety over R and
i is an isomorphism of R-spaces from the real algebraic variety X to
the R-space R(Y ), the closure Z in Y of the set of real points of Y is
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a complexification of X. For, i factors through R(j):R(Z) → R(Y ),
where j:Z → Y is the inclusion. Since j is a closed immersion,

j#
x :OY,x −→ OZ,x

is surjective for every x ∈ Z(R) = Y (R). Therefore, X is isomorphic
to R(Z), where Z has a dense set of real points. (It even follows
that Z is the union of all irreducible components C of Y having C(R)
nonempty.) �

Definition 15. A real algebraic variety X is (quasi-)projective if X is
isomorphic to a (locally) closed subvariety Y of Pn(R). An algebraic
variety X over R is (quasi-)projective if X is isomorphic to a (locally)
closed subvariety Y of Pn

R .

We have the following trivial, but important, fact.

Proposition 16. Every quasi-projective (resp. projective) real alge-
braic variety has a quasi-projective (resp. projective) complexification.

Proof. Suppose X ⊆ Pn(R) is locally closed (resp. closed). There
exists a locally closed (resp. closed) subset Y of Pn

R such that

X = Y (R).

Let Z be the closure of X in Y . Then Z is a complexification of X and
Z is quasi-projective (resp. projective). �

Of course, the complexification constructed in the proof of Proposi-
tion 16 depends on the embedding of the quasi-projective real algebraic
variety in projective space.

We will see in Section 2.5 (Theorem 29) that real algebraic groups
have canonical complexifications.

Remark 17. A typical feature of real algebraic geometry is that all
quasi-projective real algebraic varieties are actually affine. For, if X is
a quasi-projective real algebraic variety then, by Proposition 16, X has
a quasi-projective complexification Y . Without loss of generality, we
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may assume that Y is a locally closed subvariety of Pn
R . Let H be the

hypersurface in Pn
R given by

n∑

i=0

X2
i = 0.

One knows that Pn
R −H is affine [13, Exercise I.3.5]. Now the set of real

points H(R) is empty. Therefore, the real parts of Y and Y − H are
isomorphic and the real part of Y − H is quasi-affine. Hence, Y − H
is also a complexification of X. In particular, X is quasi-affine. By
Example 5, X is affine. �

1.2 Algebraic cycles and line bundles

The ith singular homology (resp. cohomology) group with coefficients
in Z/2Z will be denoted by

Hi(M,Z/2Z) (resp. H i(M,Z/2Z)).

Recall from [2, p. 235] that, if X is an affine real algebraic vari-
ety and strongly compact, i.e. Xs is compact, then every real algebraic
subvariety Y of dimension i has a fundamental class

[Y ] ∈ Hi(Xs,Z/2Z).

A cycle c ∈ Hi(Xs,Z/2Z) is said to be realizable by a real algebraic
subvariety of X if there exists an i-dimensional real algebraic subvariety
Y of X such that

[Y ] = c.

The subset Halg
i (X,Z/2Z), consisting of cycles that are realizable by

real algebraic subvarieties of X, is clearly a subgroup of Hi(Xs,Z/2Z).
Furthermore, if X is nonsingular and of dimension n then one defines
the subgroup

H i
alg(X,Z/2Z)

of H i(Xs,Z/2Z) as the image of Halg
n−i(X,Z/2Z) under Poincaré duality.
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Example 18. Let T ⊆ Rn be the real algebraic torus given by the
equation

z2 = 1 − (x2 + y2 − 2)2.

Then, intersecting the torus T with the plane z = 0 gives us the re-
ducible real algebraic subvariety

(x2 + y2 − 1)(x2 + y2 − 3) = 0

of T . Clearly, both subvarieties x2+y2 = 1 and x2+y2 = 3 represent the
same nontrivial homology class inHalg

1 (T,Z/2Z). The reader may enjoy
finding real algebraic subvarieties representing the other 2 nontrivial
elements of Halg

1 (T,Z/2Z). (It can be shown that T is isomorphic to
S1 × S1.) �

Remark 19. The following facts are known [3]. Let M be a compact
connectedC∞-manifold of dimension greater than 1. Let k be an integer
satisfying

{
0 ≤ k ≤ dimZ/2ZH

1(M,Z/2Z), if M is orientable,
1 ≤ k ≤ dimZ/2ZH

1(M,Z/2Z), if M is nonorientable.

Then there exists a nonsingular affine real algebraic variety X diffeo-
morphic to M , such that dimZ/2ZH

1
alg(X,Z/2Z) = k. �

In general, given a strongly compact affine real algebraic variety X,
it is very difficult to compute the group Halg

i (X,Z/2Z). However, in
Section 2.6 we will be able to compute this group for a large class of
real algebraic varieties in the case i = dimX−1. A crucial tool for this
is the first Stiefel-Whitney class of a strongly algebraic line bundle.

Suppose X is real algebraic variety and S is a scheme over R such
that R(S) is isomorphic to X. If L is an invertible sheaf on S then the
restriction L�R(S) of L to R(S) is an invertible sheaf on R(S). Clearly,
there is, up to isomorphism, a unique real algebraic line bundle on
R(S), denoted by R(L), such that the sheaf of sections of R(L) is
isomorphic to L�R(S). Then, if i:X → S is an isomorphism, i?R(L)
is a real algebraic line bundle on X. Moreover, if X is affine and S is
the associated real scheme of X, a real algebraic line bundle L on X is
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strongly algebraic if and only if there exists an invertible sheaf L on S
such that

i?R(L) ∼= L.

This follows immediately from the definition of strongly algebraic line
bundles [2, p. 259].

The group of isomorphism classes of strongly algebraic line bundles
on X is denoted by V 1

alg(X). Hence, by what we have said above, the

group V 1
alg(X) is isomorphic to the group PicS of invertible sheaves on

S, where S is the associated real scheme of the affine real algebraic
variety X.

If M is a topological manifold, the group of isomorphism classes of
topological line bundles on M will be denoted by V 1(M). It has been
proved in [2, p. 265] that the canonical mapping

V 1
alg(X) −→ V 1(Xs)

is injective, whenever X is strongly compact nonsingular and affine.
Hence, for such real algebraic varieties, V 1

alg(X) can be considered as a

subgroup of V 1(Xs). The following theorem, proved in [2, p. 271], shows

that if one wants to study the group Halg
n−1(X,Z/2Z) or, equivalently,

H1
alg(X,Z/2Z), one could as well study the group V 1

alg(X) of strongly
algebraic line bundles on X. (For the definition of Stiefel-Whitney
classes of a topological line bundle on a manifold, the reader is refered
to [22, p. 37].)

Theorem 20. Let X be a nonsingular affine real algebraic variety and
strongly compact. Then, the first Stiefel-Whitney class defines a map-
ping

w1:V
1
alg(X) −→ H1(Xs,Z/2Z)

which is an isomorphism onto H1
alg(X,Z/2Z).

As a consequence, H1
alg( · ,Z/2Z) is a contravariant functor from the

category of strongly compact nonsingular affine real algebraic varieties
into the category of abelian groups.

When studying strongly algebraic line bundles on an affine irre-
ducible real algebraic variety X, we will need to know whether such a
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line bundle extends to a line bundle over a complexification (Y, i) of X.
More precisely, we will need to know whether the mapping

lY : PicY −→ V 1
alg(X),

defined by lY (L) = i?R(L), is surjective, where PicY is the group of
isomorphism classes of invertible sheaves on Y . We will prove that lY
is surjective whenever X and Y are nonsingular.

Lemma 21. If X is an irreducible nonsingular affine real algebraic va-
riety and Y is a nonsingular complexification of X, then the mapping

lY : PicY −→ V 1
alg(X),

defined above, is surjective.

Proof. Let S be the associated real scheme of X. Then, S can be
considered as a subscheme of Y (see Remark 13). Since

PicS ∼= V 1
alg(X),

it suffices to show that the canonical mapping

ρ: PicY −→ PicS,

defined by ρ(L) = L�S, is surjective.
Let ClT denote the class group of a nonsingular integral scheme

T . It is proved in [13, p. 145] that the class group of such a scheme is
isomorphic to the Picard group. Clearly, the canonical mapping

ClY −→ ClS

is surjective. Therefore, ρ is surjective. This proves the lemma. �

1.3 Field of definition of an algebraic va-
riety

The object of this section is to recall a fundamental theorem from the
theory of descent. A profound study of this subject was done by A.
Weil [34], after which A. Grothendieck generalized this [12, Exp. 190].
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Before we state this fundamental theorem, we need some prepa-
ration. Let L/K be a finite Galois extension with Galois group G.
Suppose Y is an algebraic variety over L and G acts on Y , that is, for
every σ ∈ G, we are given a morphism of schemes

ψσ:Y −→ Y

such that ψ1 = idY and ψσ ◦ψτ = ψστ , for σ, τ ∈ G. Let us call such an
action a descent datum for Y with respect to the field extension L/K
if the diagram

Y

SpecL

Y

SpecL
? ?

-Specσ−1

-ψσ

commutes for every σ ∈ G.
If X is an algebraic variety over K then X ⊗K L is an algebraic

variety over L, denoted by XL. Observe that G acts on XL by letting
σ ∈ G act like

1 ⊗ σ−1:XL −→ XL.

Clearly, this action is a descent datum for XL with respect to the field
extension L/K.

The following theorem states that it is in fact equivalent to give a
quasi-projective algebraic variety X over K or to give a descent datum
for XL. For a proof the reader should consult the above mentioned
references.

Theorem 22. Let L/K be a finite Galois extension with Galois group
G. If Y is a quasi-projective algebraic variety over L endowed with a
descent datum with respect to the field extension L/K, then there exists
a unique, up to K-isomorphism, algebraic variety X over K such that
XL and Y are G-equivariantly isomorphic.

1.4 The Weil restriction

In this section we recall the definition and construction of the Weil
restriction (see [35, Section 1.3] or [12, Exp. 195, Section C2]), also
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called restriction of scalars, of an L-scheme with respect to a finite
Galois extension L/K. Although we are mainly interested in the case
L = C, K = R, we will treat this more general case here.

In this section, L/K will be a finite Galois extension and G its
Galois group.

Definition 23. If X is a scheme over L then the Weil restriction of X
with respect to the field extension L/K is a K-scheme NL/K(X) and
a morphism of L-schemes ϕ:NL/K(X) ⊗K L → X such that for every
K-scheme Y and every morphism of L-schemes ψ:Y ⊗K L→ X there
exists a unique morphism of K-schemes η:Y → NL/K(X) making the
diagram

NL/K(X) ⊗K L

Y ⊗K L

X
6

η ⊗K L
��������*

ψ

-ϕ

commutative.

The notation NL/K(X) stems from [20]. Of course, if the Weil
restriction of an L-scheme exists, it is unique up to an isomorphism.
One could rephrase the condition on NL/K(X) by requiring, for every
K-scheme Y , the existence of a bijection

HomK−Sch(Y,NL/K(X)) −→ HomL−Sch(Y ⊗K L,X),

which is natural in Y , where K−Sch denotes the category of schemes
over K. In the language of category theory (see [19]), the functor NL/K

is a right adjoint of the functor Y 7→ Y ⊗K L. Anyway, we have a
bijection

NL/K(X)(K) −→ X(L).

In the special case L = C, K = R and X is an algebraic variety
over C, the bijection NC/R(X)(R) → X(C) will give rise to an isomor-
phism of the real algebraic varieties R(NC/R(X)) and the underlying
real algebraic structure RX of X. In other words, if X is an irreducible
algebraic variety over C then NC/R(X) is a complexification of the un-
derlying real algebraic structure RX of X (Theorem 29).
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Before we prove the existence of the Weil restriction for quasi-
projective algebraic varieties, we need to fix some notation.

If X is a scheme over L and σ ∈ G then the L-scheme Xσ is defined
to be the composition

X −→ SpecL
Spec σ−1

−→ SpecL.

The assignment X 7→ Xσ can be made into a functor from the category
L−Sch of L-schemes into itself. Although this notation is classical, it is
a little bit awkward. For, if σ, τ ∈ G, then the composition of functors
X 7→ (Xτ )σ of X 7→ Xσ with X 7→ Xτ is equivalent with the functor
X 7→ Xστ . Nevertheless, we adopt the classical notation.

Forgetting the structures of an L-scheme on both X and Xσ, the
schemes X and Xσ are identical, by definition of Xσ. Therefore, the
identity on X is a morphism of schemes

ϕσ:X −→ Xσ.

Note that ϕσ is a morphism of K-schemes, not of L-schemes.

Theorem 24. Let L/K be a finite Galois extension. Then, the Weil
restriction with respect to the field extension L/K exists for quasi-
projective algebraic varieties.

Proof. Let X be a quasi-projective algebraic variety over L. We will
give a construction of the Weil restriction NL/K(X) of X with respect
to the field extension L/K.

For any σ, τ ∈ G let

ϕτ,σ−1:Xσ −→ Xτ

be the morphism of K-schemes ϕτ ◦ ϕ−1
σ . Then, for every π, σ, τ ∈ G,

we have
ϕτ,σ−1 ◦ ϕσ,π−1 = ϕτ,π−1.

Put
X ′ =

∏

α∈G

Xα,
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and let, for α ∈ G, pα:X ′ → Xα be the projection on the αth factor. We
define a descent datum for X ′ with respect to L/K as follows. Define
for any τ ∈ G a morphism ψτ :X

′ → X ′ by requiring

pα ◦ ψτ = ϕα,α−1τ ◦ pτ−1α, for every α ∈ G.

Indeed, this defines a descent datum for X ′. We only have to check
that ψσ ◦ψτ = ψστ , for every σ, τ ∈ G. This holds since, for any α ∈ G,

pα ◦ ψσ ◦ ψτ = ϕα,α−1σ ◦ pσ−1α ◦ ψτ

= ϕα,α−1σ ◦ ϕσ−1α,α−1στ ◦ pτ−1σ−1α

= ϕα,α−1στ ◦ p(στ)−1α

= pα ◦ ψστ .

Now, it follows from Theorem 22 that, if X is a quasi-projective
algebraic variety over L, there exist a unique quasi-projective algebraic
variety NL/K(X) overK and aG-equivariant isomorphism of L-schemes

NL/K(X) ⊗K L −→ X ′.

Identifying NL/K(X) ⊗K L and X ′ via this mapping, the pair

(NL/K(X), p1)

is the Weil restriction of X with respect to the field extension L/K.
We omit the easy proof of the latter statement. �

Example 25. Let L = C, K = R, and let R be embedded in C in the
standard way. Then the Galois group consists of two elements, complex
conjugation, denoted by σ, and the identity. If X is a quasi-projective
algebraic variety over C, then the algebraic variety Xσ over C, also
denoted by X, is called the conjugate variety.

Furthermore, suppose we choose an embedding i:X → Pn
C of X

in n-dimensional projective space over C. Then the conjugate variety
X is isomorphic to the image σn(X) of X under the mapping σn =
1 ⊗ σ: Pn

C → Pn
C , where we have identified Pn

C with Pn
R ⊗ C.

Moreover, the action of σ on X ′ = X ×X is the mapping ψσ. On
the set of complex points of X ′, this is just the mapping

(x, y) 7−→ (σn(y), σn(x)),
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where (x, y) ∈ X ′(C). �

Given a quasi-projective algebraic variety X over L, it is interesting
to study the set of (isomorphism classes of) quasi-projective varieties
Y over L, which have the property that NL/K(Y ) is isomorphic to
NL/K(X). Roughly speaking, one studies the fibers of NL/K.

Clearly, NL/K(Xσ) is isomorphic to NL/K(X), for every σ ∈ G.
One might expect that, in general, these are the only varieties Y with
NL/K(Y ) ∼= NL/K(X). This is true for certain curves of genus g > 1.

Theorem 26. Let L/K be a finite Galois extension of degree n and let
X be a complete geometrically irreducible nonsingular algebraic curve
over L of genus g > 1 such that X(L) is nonempty. If Y is an algebraic
curve over L with

NL/K(Y ) ∼= NL/K(X)

then there exists an automorphism σ of L over K such that Y ∼= Xσ.
In particular, the number of (isomorphism classes of) algebraic curves
Y over L having NL/K(Y ) isomorphic to NL/K(X) divides n.

Proof. Suppose NL/K(Y ) is isomorphic to NL/K(X), but Y is not iso-
morphic to any Xσ. Then, there exists an isomorphism

ϕ:
∏

α∈G

Y α −→
∏

α∈G

Xα.

In particular, Y is a complete geometrically irreducible nonsingular
algebraic curve of genus g. Let i:Y → ∏

Y α be an inclusion of Y
as a factor (which exists since Y α(L) is nonempty for all α ∈ G), let
pσ:
∏
Xα → Xσ be the projection on the σth factor. Then, for all

σ ∈ G,
pσ ◦ ϕ ◦ i:Y −→ Xσ

is a separable morphism between curves of the same genus g > 1. Since
Y is not isomorphic to Xσ, this morphism is constant, for any σ, by
Hurwitz’s Theorem [13, p. 301]. Contradiction. �

The preceding result is not true for curves of genus 1. The following
theorem, which follows easily from [14], illustrates this.
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Theorem 27. For every positive integer k, there exist mutually noniso-
morphic complete geometrically irreducible nonsingular algebraic curves
E1, . . . , Ek over C of genus 1 such that

NC/R(Ei) ∼= NC/R(Ej),

for all i, j ≤ k.

1.5 The underlying real algebraic struc-
ture of algebraic varieties over C

Let us recall the definition of the underlying real algebraic structure of
an algebraic variety over C. Taking the standard identification of Cn

with R2n, one sees immediately that, given a quasi-affine algebraic va-
riety X ⊆ An

C over C, the subset X(C) ⊆ Cn gives rise to a quasi-affine
real algebraic variety RX ⊆ R2n, called the underlying real algebraic
structure of X.

Observe that the underlying real algebraic structure of a quasi-affine
algebraic variety X over C does not depend on the embedding of X in
affine space. To see this, observe that, if X ⊆ An

C and Y ⊆ Am
C are

quasi-affine subvarieties and f :X → Y is a morphism then the induced
mapping Rf : RX → RY is a morphism of real algebraic varieties.

Now that we have defined the underlying real algebraic structure
for quasi-affine algebraic varieties over C, it is easy to extend this to
arbitrary algebraic varieties over C. For, if X is an algebraic variety
over C then choose a covering {Ui} of X by open affine subsets Ui.
Choose embeddings ϕi:Ui → A

ni

C and let Vi be the image of ϕi. Put
Vij = ϕi(Ui ∩ Uj), in particular, the varieties Vij are affine, and let
ϕji:Vij → Vji be defined by

ϕji = ϕj ◦ ϕ−1
i �Vij

.

By the preceding remark, the induced mappings Rϕji: RVij → RVji are
isomorphisms of real algebraic varieties. Furthermore, the variety RVij

is an open subvariety of RVi. Hence, the real algebraic structures RVi on
Vi(C) can be glued together along the RVij using the morphisms Rϕji.
Obviously, this defines the structure of a real algebraic variety RX on
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the set of complex points X(C) of X. Again, this structure is called
the underlying real algebraic structure of X.

In [14] the underlying real algebraic structure of an algebraic variety
X over C is denoted by XR. However, here we will use the notation

RX.

Example 28. The underlying real algebraic structure of the projective
line P1

C over C is isomorphic to the 2-sphere S2 ⊆ R3, that is,

RP1
C
∼= S2.

To show this, it will be convenient to write C × R instead of R3, then

S2 = {(z, x) ∈ C × R | |z|2 + x2 = 1}.

Define the real algebraic morphism f : RP1
C → S2 by

f : (z : w) 7−→
(

2zw

|z|2 + |w|2 ,
|z|2 − |w|2
|z|2 + |w|2

)
.

This is just the inverse of stereographic projection and is an isomor-
phism. �

To ease notation, we will often write N(X) instead of NC/R(X) for
the Weil restriction of X with respect to the (standard) field extension
C/R.

Theorem 29. If X is a quasi-projective algebraic variety over C then
the real part R(N(X)) of the Weil restriction N(X) of X with respect
to the field extension C/R is naturally isomorphic to RX as R-spaces.
Moreover, if X1, . . . , Xn are the irreducible components of X then the
Weil restrictions N(Xi) are closed subvarieties of N(X) and the union

n⋃

i=1

N(Xi)

is a complexification of the underlying real algebraic structure RX of
X.
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Proof. The second statement follows from the first and from Remark 14.
Let the pair (N(X), ϕ) be the Weil restriction of X. Let

ψ:X(C) −→ N(X)(R)

be the natural bijective mapping induced by ϕ. We will prove that ψ
induces an isomorphism

ψ̃: RX −→ R(N(X))

of R-spaces.
It clearly suffices to prove this statement for affine algebraic varieties

X over C. Let X be an affine subvariety of An
C. Then, under the

identification of Cn with R2n, the set of complex points X(C) ⊆ Cn of
X is the affine real algebraic variety RX in R2n. Since N(X) = X ×X,
which may be considered as a subvariety of An

C × An
C, the set of real

points of N(X) is the set

N(X)(R) = {(z, z) | z ∈ X(C)} ⊆ Cn × Cn.

Then the mapping ψ is given by

ψ(x1, y1, . . . , xn, yn) =
((x1 + iy1, . . . , xn + iyn), (x1 − iy1, . . . , xn − iyn)),

where (x1, y1, . . . , xn, yn) ∈ RX ⊆ R2n. The inverse of ψ is given by

ψ−1((z1, . . . , zn), (w1, . . . , wn)) =
(1

2(z1 + w1),
1
2i(z1 − w1), . . . ,

1
2(zn + wn),

1
2i(zn − wn)),

where ((z1, . . . , zn), (w1, . . . , wn)) ∈ N(X)(R) ⊆ Cn × Cn. Therefore, ψ

is continuous and induces an isomorphism ψ̃ from RX into R(N(X)). �

Remark 30. The underlying real algebraic structure of a quasi-pro-
jective algebraic variety over C is an affine real algebraic variety. For,
if X is a quasi-projective algebraic variety over C, the Weil restriction
N(X) of X is a quasi-projective algebraic variety over R. By Theo-
rem 29, the underlying real algebraic structure RX of X is isomorphic
to the real part R(N(X)) of X, which is a quasi-projective real alge-
braic variety. By Remark 17, RX is an affine real algebraic variety. �
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Proposition 31. Let X be a nonsingular complete irreducible algebraic
curve over C of genus g. Then, any irreducible real algebraic curve C
embedded in the underlying real algebraic structure RX of X has genus
at least g.

Proof. Let C ′ be any complexification of C. Since C is embedded in

RX, there exists a nonconstant rational mapping f :C ′ −−→ N(X),
by Theorem 29. Then, either p1 ◦fC or p2 ◦fC is a nonconstant rational
mapping, where pi is the projection from N(X)C = X × X onto the
ith-factor. By Hurwitz’s Theorem [13, p. 301], the genus of C is at least
g. �

Definition 32. A real algebraic variety M is said to admit a complex
structure if there exists an algebraic variety X over C such that the
underlying real algebraic structure RX of X is isomorphic to M .

Of course, there are trivial examples of real algebraic varieties which
do not admit complex structures. Odd dimensional real algebraic va-
rieties are such examples, or nonsingular real algebraic varieties which
are not orientable as smooth varieties. Other examples of real algebraic
varieties which do not admit complex structures are real algebraic vari-
eties M , having a singular point x ∈M with (algebraic) tangent space
at x to M of odd dimension. For example, a singular real algebraic sur-
face in R3 does not admit a complex structure. Less trivial examples
will be discussed in Example 33.

Example 33. Let us construct, for any integer g ≥ 1, a nonsingular
strongly compact irreducible real algebraic surface Tg ⊆ R3 of (topo-
logical) genus g which does not admit a complex structure.

Choose g distinct real numbers x1, . . . , xg. Put

f(x) =

g∏

i=1

(x− xi)
2.

Let a1 < a2 be real numbers such that the equation f(x) = a1 (resp.
f(x) = a2) has precisely 2g (resp. 2) distinct real solutions. One can
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check that

Tg =

{
(x, y, z) ∈ R3

∣∣∣∣∣

(
y2 + f(x)− a1 + a2

2

)2

+ z2 =

(
a1 − a2

2

)2
}

is a nonsingular compact irreducible real algebraic surface of (topolog-
ical) genus g.

We claim that Tg does not admit a complex structure. For, if we
intersect Tg with the plane z = 0, we get a reducible set which is the
union of two real algebraic curves C1, C2, given by

Ci = {(x, y) ∈ R2 | y2 = ai − f(x)}, for i = 1, 2.

It is well known that, since deg f = 2g, the genus of such a curve is
g − 1 (cf. [10, p. 253]). It follows from Proposition 31 that Tg does not
admit a complex structure. �

It follows from [4, Theorem 4.12] that “almost all” (in the sense
of [4]) nonsingular irreducible real algebraic surfaces M ⊆ P3(R) do
not admit a complex structure.

Definition 34. If M is a real algebraic variety, the cardinality of the
set of (isomorphism classes of) algebraic varieties X over C with RX
isomorphic to M is denoted by ρ(M).

Example 35. The number ρ(S2) of (isomorphism classes of) algebraic
varieties X over C with RX isomorphic to the 2-sphere S2 is 1. For,
if X is an algebraic curve over C with RX isomorphic to S2 then X
is of genus 0. Hence, X is isomorphic to P1

C . By Example 28, RP1
C is

isomorphic to S2. Therefore, ρ(S2) = 1. �

Example 36. The 2n-sphere S2n, where n is an integer different from
1 and 3, does not admit a complex structure, i.e. ρ(S2n) = 0. This
follows from the fact that the smooth manifold S2n does not admit an
almost complex structure, for n 6= 1, 3 (see [7]). �

Theorem 37. Let M be a nonsingular strongly compact strongly con-
nected real algebraic surface of topological genus g > 1. Then the num-
ber ρ(M) of nonisomorphic complex structures admitted by M is 0, 1
or 2.
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Proof. Suppose ρ(M) 6= 0. Choose algebraic curves X and Y over C

such that both RX and RY are isomorphic to M . In particular, X and
Y are complete nonsingular irreducible curves of genus g. Furthermore,
the algebraic surfaces N(X) and N(Y ) over R are birationally isomor-
phic. However, N(X)C and N(Y )C are minimal surfaces [26], since the
genera of both X and Y are equal to g > 0. Hence, N(X) and N(Y )
are isomorphic. By Theorem 26, Y is isomorphic to X or X . �

Remark 38. It follows from Theorem 37 and [14] that any nonsingular
strongly compact strongly connected real algebraic surface M admits,
up to isomorphism, only finitely many complex structures, i.e. ρ(M)
is finite. No example of a real algebraic variety M is known with
ρ(M) = ∞. �
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Chapter 2

Abelian varieties

In the first section of this chapter we recall the basic facts of the theory
of abelian varieties over a field. In the next section we specialize to
the field of complex numbers and recall the analytic theory of complex
tori and their line bundles. Section 2.3 is devoted to conjugate ana-
lytic varieties and complex tori with a real structure. This we will need
in Section 2.4, when we study abelian varieties over R and invertible
sheaves on abelian varieties over R. Section 2.5 contains the definition
of real abelian varieties. In Section 2.6 we will prove our results con-
cerning realizability of codimension-1 homology classes of an arbitrary
real abelian variety by real algebraic subvarieties (Theorem 89). Sec-
tion 2.7 is concerned with the topology of the underlying real algebraic
structure of elliptic curves over C with emphasis on the case of complex
multiplication. In this section we will prove our results on realizability
of Z/2Z-homology classes of these real algebraic tori by real algebraic
subvarieties.

2.1 Abelian varieties over a field

Definition 39. Let K be a field and X a connected algebraic variety
over K. Suppose

O: SpecK −→ X

m:X ×X −→ X

i:X −→ X

37
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are morphisms of algebraic varieties over K. Then, (X,O,m, i), or X
when no confusion is possible, is an algebraic group over K if

m ◦ (m× id) = m ◦ (id ×m)

m ◦ (O × id) = id

m ◦ (id × O) = id

m◦ < id, i> = O ◦ s
m◦ <i, id> = O ◦ s

where id is the identity on X and s:X → SpecK is the K-structure
on X. A morphism of algebraic groups over K from (X,OX ,mX , iX)
to (Y,OY ,mY , iY ) is a morphism f :X → Y of algebraic varieties over
K such that

mY ◦ (f × f) = f ◦mX .

Suppose X is an algebraic group over K. If P is a K-rational point
of X, we have a morphism of algebraic varieties over K

τP :X −→ X,

called translation with P , defined by τP = m ◦ iP , where iP is the map-
ping from X into X × X, given by iP (Q) = (Q,P ) on closed points
Q ∈ X. It follows that, if X is an algebraic group over K, the algebraic
variety XK over the algebraic closure K of K is nonsingular. There-
fore, X is nonsingular. Hence, X is irreducible and even geometrically
irreducible. In particular, if L is a field extension of K and X is an
algebraic group over K then XL is an algebraic group over L.

Definition 40. Let K be a field. An abelian variety over K is a com-
plete algebraic group over K. An abelian variety over K of dimension
1 is called an elliptic curve over K. A morphism of abelian varieties
over K is just a morphism of algebraic groups over K.

Example 41. Let C ⊆ P2
K be a nonsingular geometrically irreducible

cubic curve with its set of K-rational points C(K) nonempty. It is well
known [32] that C can be made into an abelian variety over K, i.e. into
an elliptic curve over K.
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On the other hand, every elliptic curve X over K is isomorphic to
some cubic curve C ⊆ P2

K . This follows easily from Riemann-Roch. �

More general, every abelian variety over K can be embedded as
a closed subvariety into some projective space [21, p. 113]. In other
words, every abelian variety over K is projective.

The geometry of abelian varieties over K is very rigid according to
the following theorems.

Theorem 42. If V is a nonsingular algebraic variety over K and X is
an abelian variety over K then every rational mapping f from V into
X is a morphism.

Theorem 43. If X and Y are abelian varieties over K and f :X → Y
is a morphism of algebraic varieties over K then τ−P ◦ f :X → Y is a
morphism of abelian varieties over K, where P = f(O).

A proof of Theorem 42 is in [21, p. 106]. Theorem 43 is proved
in [21, p. 105]. As a consequence of the latter theorem, every abelian
variety X over K is commutative, i.e.

m ◦ ϕ = m,

where ϕ:X × X → X × X exchanges the factors. For, the mapping
i:X → X maps O into O. Hence, by Theorem 43, i is a morphism of
abelian varieties over K. It follows that X is commutative.

IfX and Y are abelian varieties overK then the group of morphisms
of abelian varieties over K from X into Y is denoted by Hom(X, Y ).
It can be proved that Hom(X, Y ) is a free Z-module of finite rank [21,
p. 122]. The ring of morphisms from the abelian variety X over K into
itself is denoted by End(X), called the endomorphism ring of X. The
endomorphism algebra of X is the Q-algebra

EndoX = Q ⊗Z End(X).

Definition 44. Let K be a field. A morphism f :X → Y of abelian
varieties over K is called an isogeny if X and Y are of the same di-
mension and f has finite kernel. The abelian varieties X and Y over
K are called isogenous whenever there exists an isogeny f :X → Y .
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Example 45. If X is an abelian variety over K then, for every integer
n, we have the multiplication-by-n mapping

[n]:X −→ X.

Since X is commutative, [n] is a morphism of abelian varieties over K.
If the characteristic of K is 0 and K is algebraically closed, the order of
the kernel of [n] is n2g, where g is the dimension of X. It follows that,
for any field K of characteristic 0, the morphism [n] is an isogeny. �

It can be proved that “isogenous” is an equivalence relation [21,
p. 115].

Definition 46. Let K be a field. An abelian variety X over K is called
simple if X does not contain nontrivial abelian subvarieties over K
other than X.

The following theorem is proved in [21, p. 122].

Theorem 47. (Poincaré-Weil) Any abelian varietyX over K is isoge-
nous to a product Xn1

1 × · · · × Xnk

k , where the Xi are simple and not
isogenous to each other. The isogeny type of the Xi and the integers ni

are uniquely determined by X.

If L is a field extension of K and X is a simple abelian variety over
K then it is not necessarily true that XL is simple. Let us give an
example of this in the case K = R and L = C.

Example 48. Let Y be a simple abelian variety over C such that Y
is not isogenous to its conjugate variety Y σ. Many, not to say most,
abelian varieties over C have this property. For example, the number
of (isomorphism classes of) elliptic curves Y over C such that Y is not
isogenous to its conjugate curve Y σ is uncountable [14]. Let X be the
Weil restriction NC/R(Y ) of Y with respect to the field extension C/R.
Observe that X is an abelian variety over R. Moreover, X is a simple
abelian variety over R while XC is nonsimple.



102.2. ABELIAN VARIETIES OVER C 41

For, suppose there exists a nontrivial abelian subvariety Z over R

of X. Then, ZC is an abelian subvariety over C of
(
NC/R(Y )

)
C
∼= Y × Y σ.

Moreover, ZC is stable under the action of the Galois group of C/R on
Y ×Y σ. Therefore, the dimension of the projection of ZC on Y is equal
to the dimension of the projection of ZC on Y σ. Hence, if Z 6= O then Y
and Y σ are both isogeny factors of ZC, according to Theorem 47. Since
Y and Y σ are not isogenous, the dimension of ZC is at least 2 dimY .
This proves that Z = X. �

It is well known that, if X is a complete geometrically irreducible al-
gebraic variety over K, the canonical mapping from the group PicX of
(isomorphism classes of) invertible sheaves on X into the group PicXK

is injective, where K is an algebraic closure of K.
If X is an abelian variety over K then PicoX is the subgroup of

PicX consisting of (isomorphism classes of) invertible sheaves L on X
such that

τ ?
PLK

∼= LK ,

for every K-rational point P . The Néron-Severi group of X is, by defi-
nition, the quotient group of the group PicX by PicoX. It is denoted
by NS(X). This group is free of finite rank [21, p. 124] and this rank
is called the base number of X.

2.2 Abelian varieties over C

Suppose K is a subfield of C. If X is an algebraic variety over K
then the set of complex points X(C) of X has a natural structure of
a complex analytic variety. In particular, if X is an abelian variety
over K then X(C) has a natural structure of a complex Lie group. In
this section we study the relation between abelian varieties over C and
complex Lie groups. A basic reference for this is [23, Chapter 1].

Recall from [23, p. 1] that, if M is a compact connected complex
Lie group, one has a holomorphic mapping

expM :V −→M,
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where V is the tangent space T0M at the unit element 0 of M . This
mapping is called the exponential mapping and is defined by

expM(v) = ϕM,v(1),

where ϕM,v: C →M is the unique holomorphic mapping such that

d0ϕM,v(1) = v.

We will omit the subscript M from expM or ϕM,v when there is no
confusion possible.

If M and M ′ are compact connected complex Lie groups, f :M →
M ′ is an analytic mapping with f(0) = 0 and V (resp. V ′) is the tangent
space at the unit element 0 of M (resp. M ′), then the diagram

V

M

V ′

M ′
?

expM
?

expM ′

-f

-df

commutes, where df denotes the derivative of f in 0. For, if v ∈ V then

d(f ◦ ϕM,v)(1) = df ◦ dϕM,v(1) = df(v).

Hence, by uniqueness of ϕM ′,df(v),

ϕM ′,df(v) = f ◦ ϕM,v.

This proves the commutativity of the diagram above. As a direct con-
sequence, the exponential mapping is a morphism of groups. Indeed,
the derivative dm of the addition mapping m:M × M → M is the
addition mapping on the vector space V and the diagram

V × V

M ×M

V

M
?

expM×M

?

expM

-m

-dm
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commutes.
It follows easily from the definition of the exponential mapping that

its derivative d exp is the identity on V . Therefore, the exponential
mapping is a local homeomorphism and is surjective by connectedness
ofM . If Λ ⊆ V is the kernel of exp, then Λ is a lattice in V , that is, Λ is a
discrete subgroup of V which spans V as an R-vector space. This follows
from compactness of M . Hence, the exponential mapping induces an
isomorphism of complex Lie groups from V/Λ onto M . A complex Lie
group isomorphic to V/Λ, for some lattice Λ in some complex vector
space V , is called a complex torus.

Definition 49. Let M be the category of lattices in finite dimensional
complex vector spaces, that is, the objects of M are pairs (V,Λ), where
V is a finite dimensional C-vector space and Λ ⊆ V is a lattice. A
morphism in M from (V,Λ) to (V ′,Λ′) is a C-linear mapping L:V →
V ′ such that L(Λ) ⊆ Λ′.

Clearly, every object (V,Λ) of M is isomorphic to an object of the
form (Cn,Λ′).

We have proven above the following known theorem.

Theorem 50. The functor

M 7−→ (T0M, ker expM)

is an equivalence from the category of compact connected complex Lie
groups into the category M of lattices. The functor

(V,Λ) 7−→ V/Λ

from the category M into the category of compact connected complex
Lie groups serves as an inverse.

Let us turn our attention to abelian varieties over C. As observed
earlier, if X is an abelian variety over C then X(C) is a compact
connected complex Lie group in a natural way. By the GAGA-prin-
ciple [27], the functor X 7→ X(C) from the category of abelian varieties
over C into the category of compact connected complex Lie groups is
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an equivalence from the former onto some full subcategory of the lat-
ter. According to Theorem 50, this subcategory should be equivalent
to a subcategory of the category M of lattices. The following theorem
describes this subcategory [23, p. 35].

Theorem 51. The functor

X 7−→ (T0X(C), ker exp)

is an equivalence from the category of abelian varieties over C onto the
full subcategory of the category M consisting of pairs (V,Λ) such that
there exists a positive definite Hermitian form

H:V × V −→ C

with E = ImH integral on Λ, that is E(Λ × Λ) ⊆ Z.

Example 52. If Λ is a lattice in C, we may assume that Λ = Λτ , where

Λτ = Z + Zτ,

for some τ ∈ C with Im τ positive. Then

H(z, w) =
zw

Im τ

defines a positive definite Hermitian form on C with E = ImH integral
on Λ. Therefore, by Theorem 51, for all lattices Λ in C there exists an
abelian variety X over C such that

X(C) ∼= C/Λ.

Clearly, X is an elliptic curve over C. �

Since we will study line bundles, we will need the Theorem of
Appell-Humbert. Before we can state this theorem, we need to in-
troduce the following notation.

Let us recall that a Hermitian form on a complex vector space V is
a mapping

H:V × V −→ C
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which is C-linear in the first variable and

H(v′, v) = H(v, v′),

for every v, v′ ∈ V . In particular, if H is an Hermitian form on V then
E = ImH is an alternating R-bilinear form on V such that

E(iv, iv′) = E(v, v′),

for every v, v′ ∈ V .
Conversely, if E is an alternating R-bilinear form on the complex

vector space V such that E(iv, iv′) = E(v, v′), for every v, v′ ∈ V , then

H(v, v′) = E(iv, v′) + iE(v, v′)

defines a Hermitian form on V .
If V is a finite-dimensional complex vector space and Λ ⊆ V is a

lattice, then an Appell-Humbert datum for (V,Λ) is a pair (α,H), where
H is a Hermitian form on V , such that E = ImH is integral on Λ, and
α is a mapping from Λ into the 1-sphere

S1 = {z ∈ C | |z| = 1},

such that

α(λ+ µ) = α(λ)α(µ)(−1)E(λ,µ),

for every λ, µ ∈ Λ.
Given an Appell-Humbert datum (α,H) one defines, for every λ ∈

Λ, a holomorphic function eλ:V → C? by

eλ(v) = α(λ)eπH(v,λ)+ 1

2
πH(λ,λ).

One can check that

λ(v, z) = (v + λ, eλ(v)z)

defines an action of Λ on V × C. The quotient of V × C under this
action of Λ is a complex analytic line bundle, denoted by L(α,H), on
the complex analytic variety V/Λ.
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Clearly, the set AH(V,Λ) of Appell-Humbert data for (V,Λ) is a
group if we define

(α1, H1)(α2, H2) = (α1α2, H1 +H2),

for any Appell-Humbert data (α1, H1) and (α2, H2) for (V,Λ). More-
over, the mapping L that assigns the line bundle L(α,H) to the Appell-
Humbert datum (α,H), is a morphism from AH(V,Λ) into the group
of (isomorphism classes of) complex analytic line bundles on V/Λ.

Then the Appell-Humbert Theorem reads as follows [23, p. 20].

Theorem 53. (Appell-Humbert) If V is a complex vector space of
finite dimension and Λ ⊆ V is a lattice, then for every complex analytic
line bundle L on the complex analytic variety V/Λ, there exists a unique
Appell-Humbert datum (α,H) for (V,Λ) such that

L ∼= L(α,H).

In other words, the mapping L from the group AH(V,Λ) into the group
of (isomorphism classes of) complex analytic line bundles on V/Λ is an
isomorphism.

Remark 54. (according to [15, p. 5]) Let V be a complex vector space
of dimension n and let Λ ⊆ V be a lattice. Suppose that we are given
a Hermitian form H on V such that E = ImH is integral on Λ. Let
us study the mappings α from Λ into the 1-sphere S1 such that (α,H)
is an Appell-Humbert datum. For this, choose a Z-basis λ1, . . . , λ2n for
Λ.

Clearly, a mapping α from Λ into the 1-sphere such that (α,H) is
an Appell-Humbert datum is determined by the complex numbers

αi = α(λi), i = 1, . . . , 2n.

On the other hand, if we are given complex numbers

αi ∈ S1, i = 1, . . . , 2n,

then there exists a mapping α from Λ into the 1-sphere such that (α,H)
is an Appell-Humbert datum and α(λi) = αi, i = 1, . . . , 2n. For, define
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δ: Λ → Z by

δ(λ) =
∑

i<j

mimjE(λi, λj),

where λ =
∑
miλi. Then, for every λ, λ′ ∈ Λ,

δ(λ+ λ′) =
∑

i<j

(mi +m′
i)(mj +m′

j)E(λi, λj)

≡ δ(λ) + δ(λ′) +
∑

i<j

(mim
′
j −mjm

′
i)E(λi, λj) (mod 2)

= δ(λ) + δ(λ′) +
∑

i,j

mim
′
jE(λi, λj)

= δ(λ) + δ(λ′) +E(λ, λ′),

where λ =
∑
miλi and λ′ =

∑
m′

iλi. Hence,

α(λ) = (−1)δ(λ)
2n∏

i=1

αmi

i ,

where λ =
∑
miλi, defines a mapping α from Λ into the 1-sphere such

that (α,H) is an Appell-Humbert datum.
As a consequence we have an evident exact sequence

0 −→ Hom(Λ, S1) −→ AH(V,Λ) −→ H(V,Λ) −→ 0,

where H(V,Λ) is the group of Hermitian forms H on V with E = ImH
integral on Λ. �

Let us turn our attention to invertible sheaves on abelian varieties
over C. If we have an invertible sheaf L on the abelian variety X
over C then the associated geometric line bundle V (L) [13, p. 128] is
itself an algebraic variety over C. In particular, the set of complex
points V (L)(C) is a complex analytic line bundle over X(C). We will
denote this line bundle by L(C). The following theorem is then a direct
consequence of the GAGA-principle [27, p. 19] and Theorem 53.

Theorem 55. Let X be an abelian variety over C, (V,Λ) a lattice and
π:V → X(C) a mapping which induces an isomorphism π̃ from V/Λ
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onto X(C). Then, the mapping from PicX into the group of (isomor-
phism classes of) complex analytic line bundles on V/Λ, given by

L 7−→ π̃?L(C)

is an isomorphism. In particular, for every Appell-Humbert datum
(α,H) for (V,Λ) there exists a unique invertible sheaf L on X such
that

π̃?L(C) ∼= L(α,H).

Remark 56. Let X be an abelian variety over C, (V,Λ) a lattice and
π:V → X(C) a mapping which induces an isomorphism π̃ from V/Λ
onto X(C). One knows [23, p. 30] that L is ample if and only if H is
positive definite, where L is an invertible sheaf on X and (α,H) is an
Appell-Humbert datum for (V,Λ) such that

L(α,H) ∼= π̃?L(C).

Moreover, it is proved in [23, p. 184] that L is an element of PicoX
if and only if H = 0. �

Remark 57. By Theorem 55 and Remark 56 we have a good knowledge
of the group PicX of the abelian variety X over C. For, if (V,Λ) is a
lattice such that V/Λ ∼= X(C) then we have a commutative diagram

0 −→ Hom(Λ, S1) −→ AH(V,Λ) −→ H(V,Λ) −→ 0
↓ ↓ ↓

0 −→ PicoX −→ PicX −→ NS(X) −→ 0

where the vertical arrows are isomorphisms and the horizontal sequen-
ces are exact. �

2.3 Conjugate analytic varieties

In contrast with the existence of a conjugate algebraic variety Xσ, for
every algebraic variety X over C and every automorphism σ of C, there
seems only to exist something like a conjugate varietyM σ, for a complex
analytic variety M , if the automorphism σ of C is continuous, i.e. σ is
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either the identity or complex conjugation. Let us give the construction
of the conjugate complex analytic variety M σ of the complex analytic
variety M in the case that σ is complex conjugation.

Since a complex analytic variety is a locally ringed space (M,OM),
where OM is a sheaf of local C-algebras, one can define the sheaf Oσ

M

of local C-algebras by letting Γ(U,Oσ
M) be the ring Γ(U,OM) with the

conjugate C-algebra structure, i.e.

λ · f = σ(λ)f,

for any f ∈ Γ(U,Oσ
M), U open in M and λ ∈ C. The topological space

M , equipped with the sheaf of local C-algebras Oσ
M , defines the locally

ringed space Mσ.
There is an obvious morphism of locally ringed spaces

ϕM :M −→Mσ,

such that ϕM is just the identity on the underlying topological space
M and ϕ#

M(f) = f for any f ∈ Γ(U,Oσ
M) and U open in Mσ. Observe

that ϕM is not a morphism of complex analytic varieties. For, ϕM is
not C-linear (but anti-C-linear).

One can check that Mσ is a complex analytic variety whenever M is
one (here one will need continuity of the action of σ on C). Moreover,
the assignment M 7→ Mσ extends to a functor from the category of
complex analytic varieties into itself. For, if f :M → N is a morphism
of complex analytic varieties then

fσ:Mσ −→ Nσ,

defined by fσ = ϕN◦f◦ϕ−1
M , is a morphism of complex analytic varieties.

Observe that, if V is a complex vector space, there is some ambi-
guity in the symbol V σ. For, both the conjugate complex vector space
structure on V and the conjugate complex analytic variety V σ are de-
noted by V σ. Fortunately, both objects are canonically isomorphic as
complex analytic varieties. This justifies our notation.

Example 58. Let M be a complex torus and V its tangent space at
the unit element. Then, the conjugate complex vector space structure
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V σ on V is the tangent space to Mσ at the unit element of Mσ and the
holomorphic mapping

expσ
M :V σ −→Mσ

is equal to the exponential mapping expMσ of Mσ. This follows easily
from the definition of the exponential mapping.

In particular, ifM = V/Λ, for some lattice Λ ⊆ V , then Λσ = ϕV (Λ)
is a lattice in V σ and Mσ is isomorphic to V σ/Λσ.

In the special case that V = Cn, one can identify V σ with Cn via

V σ −→ Cn

v 7−→ ϕ−1
V (v).

Hence, if M = Cn/Λ then Mσ is isomorphic to Cn/Λ. �

If we have an algebraic variety X over C then, on the one hand, we
can take the complex analytic variety Xσ(C) associated to the conju-
gate algebraic variety Xσ and, on the other hand, we have just defined
the conjugate analytic variety X(C)σ of the analytic variety X(C) as-
sociated to X. It is easy to see that both constructions give rise to the
same complex analytic variety. More precisely, the functors

X 7−→ Xσ(C) and X 7−→ X(C)σ

from the category of algebraic varieties over C into the category of
complex analytic varieties are naturally isomorphic.

Furthermore, if p:L → M is a complex analytic line bundle on M
then

pσ:Lσ −→Mσ

is a complex analytic line bundle on Mσ, called the conjugate line bun-
dle.

In the particular case thatM = V/Λ, where Λ is a lattice in the com-
plex vector space V , and L is the Appell-Humbert line bundle L(α,H),
for some Appell-Humbert datum (α,H) for (V,Λ), one can try to find
an Appell-Humbert datum for (V σ,Λσ) that gives rise to a line bundle
on V σ/Λσ isomorphic to Lσ.
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Define a Hermitian form Hσ on V σ by

Hσ(v, v′) = H(ϕ−1
V (v), ϕ−1

V (v′)),

for every v, v′ ∈ V σ, and define a mapping ασ from Λσ into S1 by

ασ(λ) = α(ϕ−1
V (λ)),

for every λ ∈ Λσ. Then, it is easy to check that (ασ, Hσ) is an Appell-
Humbert datum for (V σ,Λσ).

Lemma 59. If M = V/Λ, where Λ is a lattice in the complex vector
space V , and (α,H) is an Appell-Humbert datum for (V,Λ) then the
conjugate line bundle L(α,H)σ of L(α,H) is isomorphic to the line
bundle L(ασ, Hσ).

Proof. The conjugate line bundle L(α,H)σ is the quotient of V σ × C

under the action of Λσ given by

λ(v, z) = (v + λ, eϕ−1

V (λ)(ϕ
−1
V (v))z),

where v ∈ V σ, z ∈ C, λ ∈ Λσ and eµ, for µ ∈ Λ, is the holomorphic
function on V associated with the Appell-Humbert datum (α,H). Put
λ′ = ϕ−1

V (λ) and v′ = ϕ−1
V (v). Then

eλ′(v′) = α(λ′)eπH(v′,λ′)+ 1

2
πH(λ′,λ′) = ασ(λ)eπHσ(v,λ)+ 1

2
πHσ(λ,λ)

is equal to the function eλ, associated with the Appell-Humbert datum
(ασ, Hσ). Therefore, L(α,H)σ is isomorphic to L(ασ, Hσ). �

Let G denote the Galois group of C/R. If G acts on the complex
analytic variety M such that the action of σ is anti-holomorphic then
this action of G on M is called a real structure on M . Let M and N be
complex analytic varieties with a real structure. A mapping f from M
into N is a morphism of complex analytic varieties with a real structure
if f is an analytic mapping and f is G-equivariant.

This notion of a real structure will be interesting for us since, if X
is an abelian variety over R then the complex analytic variety X(C)
has a natural real structure.
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Remark 60. If a complex analytic variety M has a real structure then
the conjugate complex analytic varietyM σ can be canonically identified
with M in the following way. The mapping

Mσ −→ M

m 7−→ σϕ−1
M (m)

is an isomorphism of complex analytic varieties, moreover this isomor-
phism is natural in M . Clearly, the mapping ϕM from M into Mσ

corresponds under this isomorphism to the action of σ on M . There-
fore, if M is a complex analytic variety with a real structure we may
identify Mσ with M through the isomorphism above. The mapping ϕM

is then the action of σ on M . In particular, if M and N are complex
analytic varieties with a real structure and f is just an analytic map-
ping from M into N then, under these identifications of M σ with M
and Nσ with N , fσ is an analytic mapping from M into N satisfying

fσ(m) = σf(σ−1m),

for m ∈M .
Furthermore, if M is a complex analytic variety with a real struc-

ture and p:L → M is a complex analytic line bundle on M , then the
conjugate line bundle Lσ is a line bundle on M , under the identification
of Mσ with M . �

Assumption 61. Of course, in the special case that M is a complex
torus, it might happen that a real structure on M does not have the
unit element of M as a fixed point. However, since we will only meet
such tori of the form X(C), where X is an abelian variety over R, we
may as well assume that a real structure on a complex torus has the
unit element as a fixed point. �

Suppose M is a complex torus with a real structure. Then, accord-
ing to the above assumption, the unit element 0 of M is invariant under
the action of G. Hence, we get an induced action of G on the tangent
space V to M at 0. In fact, this action is a real structure on the com-
plex analytic variety V . Hence, by Example 58 and Remark 60, the
exponential mapping

exp:V →M
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is G-equivariant. In particular, the kernel ker exp is invariant under the
G-action.

Definition 62. Let us define the category MR of lattices over R by
taking as objects pairs (W,Λ), where W is a finite-dimensional R-vector
space and

Λ ⊆W ⊗R C

is a lattice, stable under the canonical action of G on W ⊗R C, and as
morphisms from (W,Λ) into (W ′,Λ′) R-linear mappings L:W → W ′

such that

(L⊗ C)(Λ) ⊆ Λ′.

We see that, if M is a complex torus with a real structure, the pair

(V G, ker exp)

is a lattice over R. This proves, together with Theorem 50, the following
proposition.

Proposition 63. (under Assumption 61) The functor

M 7−→ ((T0M)G, ker exp)

is an equivalence from the category of complex tori having a real struc-
ture into the category MR of lattices over R. The functor

(W,Λ) 7−→W ⊗R C/Λ

from the category MR into the category of complex tori having a real
structure serves as an inverse. �

Let us turn our attention to real structures on line bundles. If M
is a complex analytic variety with a real structure then a real structure
on a complex analytic line bundle p:L → M is a real structure on the
total space L such that p is a morphism of complex analytic varieties
with a real structure and the action of G is R-linear on each fibre.
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Remark 64. If W is a real vector space and V = W ⊗R C then it is
clear that, making the identification of V σ with V as in Remark 60,

Hσ(v, v′) = H(σ−1v, σ−1v′),

for any v, v′ ∈ V . Moreover, if Λ ⊆ V is a lattice, stable under the
action of G and α is a mapping from Λ into S1 then

ασ(λ) = α(σ−1λ),

for any λ ∈ Λ. Hence, if (W,Λ) is a lattice over R and M = V/Λ, where
V = W ⊗R C, then the existence of a real structure on the complex line
bundle L(α,H), for some Appell-Humbert datum (α,H) for (W,Λ),
implies that

ασ = α and Hσ = H,

by Lemma 59.
Conversely, if (α,H) is an Appell-Humbert datum for (V,Λ) such

that ασ = α and Hσ = H, then there exists a real structure on the
complex line bundle L(α,H) on V/Λ. For, G acts on the trivial line
bundle V × C by

σ(v, z) = (σv, z).

This action factorizes through the quotient of V × C by the action of
Λ, since

σ(λ(v, z)) = (σv + σλ, eλ(v)z)

= (σv + σλ, eσλ(σv)z)

= (σλ)(σv, z)

= (σλ)(σ(v, z)),

where eλ is the holomorphic function associated to (α,H). Therefore,
L(α,H) has a real structure. �

Observe that, if W is a real vector space and F is a symmetric
bilinear form on W , we can define a Hermitian form F ⊗ C on V =
W ⊗ C, determined by

(F ⊗ C)(w ⊗ α,w′ ⊗ α′) = αα′F (w,w′),
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Conversely, if H is a Hermitian form on V such that Hσ = H then
there exists a symmetric bilinear form F on W such that F ⊗ C = H.
Moreover, F is an inner product if and only if H is positive definite.

If (W,Λ) is a lattice over R, let us call a pair (α, F ), where α is a
mapping from Λ into S1 and F is a symmetric bilinear form on W , an
Appel-Humbert datum over R for (W,Λ) if ασ = α and (α, F ⊗ C) is
an Appel-Humbert datum for (W ⊗R C,Λ). In such case, it is proved
in Remark 64 that the complex analytic line bundle L(α, F ⊗ C) over
V/Λ, where V = W ⊗R C, has a canonical real structure. Let us denote
the complex analytic line bundle L(α, F ⊗ C) over V/Λ together with
this real structure by L(α, F ).

We will denote the set of Appell-Humbert data over R for the lattice
(W,Λ) over R by AH(W,Λ). This set is made into a group when we
define the group structure by

(α1, F1)(α2, F2) = (α1α2, F1 + F2).

Clearly, the mapping L from the group AH(W,Λ) into the group of
(isomorphism classes of) complex analytic line bundles on V/Λ having
a real structure is a morphism of groups. Then, we have a real version
of the Theorem of Appell-Humbert.

Lemma 65. Let (W,Λ) be a lattice over R and put V = W ⊗R C. If
L is a complex analytic line bundle on V/Λ with a real structure, then
there exists a unique Appel-Humbert datum (α, F ) over R for (W,Λ)
such that

L(α, F ) ∼= L,

as complex line bundles with a real structure. In other words, the map-
ping L from the group AH(W,Λ) into the group of (isomorphism classes
of) complex analytic line bundles on V/Λ having a real structure is an
isomorphism.

Proof. By Remark 64, if L is a complex analytic line bundle on V/Λ
with a real structure then there exists an Appel-Humbert datum (α,H)
for (V,Λ) such that L(α,H) is isomorphic to L as complex line bundles
over V/Λ. Moreover, ασ = α and Hσ = H, hence there exists a unique
Appel-Humbert datum (α, F ) over R for (W,Λ) such that L(α, F ) and
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L are isomorphic as complex analytic line bundles. We have to show
that this isomorphism can be chosen to be G-equivariant.

This can be shown most conveniently using the theory of forms [28,
p. III-1]. For, L is a form of L(α, F ) with respect to the field extension
C/R. Hence, we would have proved the lemma if we show that the first
cohomology group

H1(G,AutL(α, F ⊗ C))

is trivial. Indeed AutL(α, F ⊗ C) = C?, since V/Λ is compact, and
this identity holds even G-equivariantly. One knows that H1(G,C?) is
trivial. The lemma follows. �

2.4 Abelian varieties over R

If X is an abelian variety over R then, as mentioned in Section 2.2, the
set of complex points X(C) is a complex torus with a real structure.
Hence, if we put W = (T0X(C))G and Λ = ker exp then (W,Λ) is a
lattice over R.

If L is an invertible sheaf on X, the geometric line bundle V (L)
associated to L [13, p. 128] is an algebraic variety over R itself. There-
fore,

V (L)(C) −→ X(C)

is a complex analytic line bundle onX(C) with a real structure, denoted
by L(C).

Theorem 66. The functor

X 7−→ ((T0X(C))G, ker exp)

is an equivalence from the category of abelian varieties over R onto the
full subcategory of the category MR consisting of pairs (W,Λ) such that
there exists an inner product F on W with E = Im(F ⊗C) integral on
Λ.

Proof. Suppose that X is an abelian variety over R and let (W,Λ) be
the lattice ((T0X(C))G, ker exp) over R. Since X is projective (see Sec-
tion 2.1), there exists an ample invertible sheaf L on X. In particular,
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L(C) is a complex analytic line bundle on X(C) with a real structure.
Hence, by Lemma 65, there exists an Appell-Humbert datum (α, F )
over R for (W,Λ) such that

L(α, F ) ∼= L(C).

Since L is ample, the Hermitian form F ⊗ C is an inner product by
Remark 56. Therefore, F is an inner product.

Conversely, if (W,Λ) is a lattice over R and F is an inner product on
W with E = Im (F ⊗C) integral on Λ then we know from Theorem 51
that there exists an abelian variety Y over C such that Y (C) is isomor-
phic to V/Λ, where V = W ⊗R C. Using the GAGA-principle [27], the
real structure on V/Λ gives rise to a descent datum for Y with respect
to the field extension C/R. According to Theorem 22, there exists an
algebraic variety X over R such that XC and Y are G-equivariantly
isomorphic. In particular, X(C) and V/Λ are isomorphic as complex
tori having a real structure. Of course, X is an abelian variety over R.

The fact that the above functor is full follows from the GAGA-
principle [27] and Proposition 63. Faithfulness is trivial. �

Remark 67. As a consequence of Theorem 66, if Λ is a lattice in Cn,
stable under the action of σ on Cn and such that there exists a positive
definite Hermitian form H on Cn with E = ImH integral on Λ, then
there exists an abelian variety X over R such that

X(C) ∼= Cn/Λ

as complex tori with a real structure. For this, it is crucial that the
action of the Galois group G of C/R on V = W ⊗R C is continuous.

To illustrate this point, take instead of R the subfield

K = Q (
√
−5)

of C and let G be the group of automorphisms of C over K. Let Λ ⊆ C

be the lattice
Z + Z

√
−5.

Then, Λ is invariant under the action of G on C and there exists a
positive definite Hermitian form H on Cn with E = ImH integral
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on Λ, according to Example 52. But, there does not exist an abelian
variety X over K such that X(C) is isomorphic to C/Λ as complex
tori. Indeed, it is the theory of complex multiplication [29] which tells
us that one has to enlarge the field K to its Hilbert class field L. More
precisely, there exists an abelian variety X over L such that X(C) is
isomorphic to V/Λ as complex Lie groups. In our case L = K(

√
−1)

will do. �

Theorem 68. Let X be an abelian variety over R, (W,Λ) a lattice
over R and π:V → X(C) a mapping which induces an isomorphism of
complex tori having a real structure π̃ from V/Λ onto X(C), where V =
W⊗RC. Then, the mapping from PicX into the group of (isomorphism
classes of) complex analytic line bundles on V/Λ having a real structure,
given by

L 7−→ π̃?L(C)

is an isomorphism. In particular, for every Appell-Humbert datum
(α, F ) over R for (W,Λ) there exists a unique invertible sheaf L on
X such that

π̃?L(C) ∼= L(α, F ),

as complex analytic line bundles having a real structure.

Proof. The first part follows from the GAGA-principle [27] and the
Theorem of descent. The last part is then a direct consequence of the
real version of the Appell-Humbert Theorem (Lemma 65). �

Theorem 68 will give us good insight in the group PicX of isomor-
phism classes of invertible sheaves on the abelian variety X over R (see
Remark 73).

Let F(W,Λ) be the group of symmetric bilinear forms F on W with
E = Im (F ⊗ C) integral on Λ. Then the projection

AH(W,Λ) −→ F(W,Λ)

is surjective. This is implied by the following lemma.
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Lemma 69. If (W,Λ) is a lattice over R and F is a symmetric bilinear
form on W with E = Im (F ⊗ C) integral on Λ, then there exists a
mapping

α: Λ −→ S1

such that (α, F ) is an Appell-Humbert datum over R for (W,Λ).

Actually, this lemma is a consequence of Proposition 72. For the
proof of this proposition we will need the following proposition, which
describes the structure of lattices over R. We will omit the proof of
this proposition.

Let us first introduce the following notation. If the Galois group G
of C/R acts on a group H then we define

ReH = {h ∈ H | σh = h}

and

ImH = {h ∈ H | σh = −h},
where σ is the nontrivial element of G.

Proposition 70. Let W be a real vector space of dimension n and let
Λ ⊆ V be a lattice, invariant under the action of G on V = W ⊗R C.
Then there exist a Z-basis x1, . . . , xn for Re Λ and a Z-basis y1, . . . , yn

for ImΛ such that

1
2(x1 + y1), . . . ,

1
2(xk + yk), x1, . . . , xn, yk+1, . . . , yn

is a Z-basis for Λ, for some uniquely determined integer k, 0 ≤ k ≤ n.

We will call this integer k, which is uniquely determined by Λ, the
degree of connectedness of Λ (or (W,Λ)). We will see (cf. Corollary 84)
that the number of connected components of (V/Λ)G is precisely 2n−k,
if n is the dimension of W .

Remark 71. As a consequence of Proposition 70, ifW is a n-dimensional
real vector space, a lattice Λ ⊆ V over R is completely determined by
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its degree of connectedness k and the nonsingular real n×n-matrix M ,
defined by

yl =

n∑

j=1

mljixj,

where x1, . . . , xn is a Z-basis for Re Λ and y1, . . . , yn a Z-basis for Im Λ
as in Proposition 70. For, we can make a lattice Λ′ ⊆ V over R out
of the nonsingular real n×n-matrix M and the integer k as follows.
Choose an R-basis w1, . . . , wn for ReV and define

vl =

n∑

j=1

mljiwj.

Then v1, . . . , vn is an R-basis for ImV and the Z-module Λ′ ⊆ V gen-
erated by

1
2(w1 + v1), . . . ,

1
2(wk + vk), w1, . . . , wn, vk+1, . . . , vn

is a lattice over R. Clearly, (W,Λ′) and (W,Λ) are isomorphic as lattices
over R. For, if L is a linear mapping from W into itself, such that
Lwj = xj, for every j, then

(L⊗ C)(Λ′) = Λ.

Hence, L is an isomorphism from (W,Λ′) onto (W,Λ). �

Proposition 72. Let (W,Λ) be a lattice over R and let x1, . . . , xn be a
Z-basis for Re Λ and y1, . . . , yn a Z-basis for Im Λ such that

z1, . . . , zk, x1, . . . , xn, yk+1, . . . , yn

is a Z-basis for Λ, where zj = 1
2(xj + yj), for j = 1, . . . , k. Suppose

we are given a symmetric bilinear form F on W , with E = Im (F ⊗C)
integral on Λ, and complex numbers αj ∈ S1, j = 1, . . . , n. Then,
there exists a mapping α from Λ into S1 such that (α, F ) is an Appell-
Humbert datum over R for (W,Λ) and α(xj) = αj, for every j, if and
only if all αj are ±1 and

αj = (−1)
1

2
E(xj ,yj), for j = 1, . . . , k.
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Proof. Suppose we have a mapping α from Λ into S1 such that (α, F )
is an Appell-Humbert datum over R for (W,Λ) and α(xj) = αj , for
every j. Since α is G-equivariant, α(xj) = ±1, for every j. Therefore,
αj = ±1, for every j. Moreover,

α(zj) = α(zj)

= α(xj − zj)

= α(xj)α(zj)
−1(−1)

1

2
E(xj ,yj)

= α(xj)α(zj)(−1)
1

2
E(xj ,yj),

for j = 1, . . . , k. Hence, αj = (−1)
1

2
E(xj ,yj), for j = 1, . . . , k.

Conversely, if all αj are ±1 and αj = (−1)
1

2
E(xj ,yj), for j = 1, . . . , k,

then, according to Remark 54, there exists a mapping

α: Λ −→ S1

such that (α, F⊗C) is an Appell-Humbert datum for (V,Λ) and α(xj) =
αj for every j. The above equation shows at the same time that α is
G-equivariant. Hence, (α, F ) is an Appell-Humbert datum over R for
(W,Λ). �

As a consequence of Lemma 69 we have an exact sequence

0 −→ HomG(Λ, S1) −→ AH(W,Λ) −→ F(V,Λ) −→ 0,

where HomG(Λ, S1) is the group of G-equivariant morphisms from Λ
into S1, whenever (W,Λ) is a lattice over R.

Remark 73. Suppose X is an abelian variety over R and π is a map-
ping from V = W ⊗ C into X(C) such that π induces a G-equivariant
mapping

π̃:V/Λ −→ X(C).

Then, by Theorem 68, the mapping

AH(W,Λ) −→ PicX

(α, F ) 7−→ L,
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where L is the unique invertible sheaf on X such that L(C) is G-
equivariantly isomorphic to L(α, F ), is an isomorphism. Moreover, by
Remark 56, this isomorphism maps the subgroup of AH(W,Λ) consist-
ing of (α, F ), such that F = 0, onto PicoX. Therefore, we have the
commutative diagram

0 −→ HomG(Λ, S1) −→ AH(W,Λ) −→ F(W,Λ) −→ 0
↓ ↓ ↓

0 −→ PicoX −→ PicX −→ NS(X) −→ 0

where the vertical arrows are isomorphisms and the horizontal sequen-
ces are exact. �

If X is an abelian variety over R then, recall from Section 2.1 that
the base number of X, i.e. the rank of the Néron-Severi group of X is
finite. Since the canonical mapping

PicX → PicXC

is injective, the base number of X is smaller than or equal to the base
number of XC. In particular, the base number of X is smaller than
or equal to n(2n − 1), if n is the dimension of X. We will prove in
Corollary 76 that this number is even smaller than or equal to 1

2
n(n+1).

For this we need some preparation.
If A is an n×n-matrix, let us denote the transpose matrix of A by

AT .

Proposition 74. Let (W,Λ) be a lattice over R. Let x1, . . . , xn be a Z-
basis for Re Λ and y1, . . . , yn be a Z-basis for ImΛ as in Proposition 70.
In particular, k is the degree of connectedness of Λ. Then, there is a
one-to-one correspondence between the set of symmetric bilinear forms
F on W with E = Im(F ⊗ C) integral on Λ and the set of R-linear
pairings

e: ReV × ImV −→ R

such that
(i) e is integral on Re Λ × Im Λ,
(ii) e(xj, yl) ≡ 0 mod 2, if j ≤ k or l ≤ k,
(iii) e(xj, yl) ≡ e(xl, yj) mod 4, if j ≤ k and l ≤ k,
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(iv) e(iv2, iv1) = −e(v1, v2), for all v1 ∈ ReV and v2 ∈ ImV .
More precisely,

F 7−→ e

where e = E�ReV ×Im V and E = Im (F ⊗ C), defines such a correspon-
dence. Moreover, F is an inner product if and only if e is nondegenerate
and e(iv, v) > 0, for all nonzero v ∈ ImV .

Proof. If F is a symmetric bilinear form on W with E = Im (F ⊗ C)
integral on Λ then

e: ReV × ImV −→ R,

defined by e(v1, v2) = E(v1, v2), is indeed an R-linear pairing and sat-
isfies the properties above since E(v, v′) = 0, whenever v, v′ ∈ ReV or
v, v′ ∈ ImV .

Conversely, suppose we are given an R-linear pairing e on ReV ×
ImV which satisfies the properties above. Let σ be the nontrivial ele-
ment of the Galois group G of C/R and let p1:V → ReV be defined
by

p1(v) = 1
2(v + σv)

and p2:V → ImV defined by

p2(v) = 1
2(v − σv),

then E(v, v′) = e(p1(v), p2(v
′)) − e(p1(v

′), p2(v)) defines an alternat-
ing bilinear form E on V × V . Since p1(iv) = ip2(v), we see that
E(iv, iv′) = E(v, v′). Hence, as explained in Section 2.2, there exists a
unique Hermitian form H on V such that

ImH = E.

It is also clear that E(σv, σv′) = −E(v, v′). Therefore, there exists a
unique symmetric bilinear form F on W such that F ⊗ C = H.

Hence, we would have finished the proof of the first assertion if we
have shown that E, as defined above, is integral on Λ. This follows
from the properties (i), (ii) and (iii) of e.

Finally, F is an inner product if and only if E(iv, v) > 0, for all
nonzero v ∈ V . The latter statement is equivalent to e(iv, v) > 0, for
all nonzero v ∈ ImV . This proves the proposition. �
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Define, for a real n×n-matrix M and for an integer k, the additive
group Sk(M) of integral n×n-matrices N = (njl) such that

(MN)T = MN

and njl ≡ 0 mod 2, if j ≤ k or l ≤ k, and nlj ≡ njl mod4, if j ≤ k and
l ≤ k.

Proposition 75. Let (W,Λ) be a lattice over R and let x1, . . . , xn be
a Z-basis for Re Λ and y1, . . . , yn a Z-basis for ImΛ such that as in
Proposition 70. Let M = (mlj) be the invertible real n×n-matrix such
that

yl =

n∑

j=1

mljixj.

Then the group of R-linear pairings e on ReV × ImV , such that e sat-
isfies conditions (i), (ii), (iii) and (iv) of Proposition 74 is isomorphic
to the group Sk(M). An isomorphism is given by

e 7−→ N,

where N = (njl) and njl = e(xj, yl). Moreover, e is nodegenerate and
e(iv, v) > 0, for all nonzero v ∈ ImV , if and only if MN is negative
definite, i.e. −MN is positive definite.

Proof. Let us denote the element of the matrix A that is in the j th

row and the lth column by Ajl. Then, if e is an R-linear pairing on
ReV × ImV and N is the matrix (njl), where njl = e(xj, yl), the
pairing e satisfies conditions (i), (ii) and (iii) of Proposition 74 if and
only if N is an integral matrix, i.e.

N ∈ Mn(Z),

and njl ≡ 0 mod 2, if j ≤ k or l ≤ k, and nlj ≡ njl mod4, if j ≤ k and
l ≤ k.

Let us denote the (j, l)-element of M−1 by m−1
jl , by abuse of nota-

tion. Then

xj = −
n∑

p=1

m−1
jp iyp
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and

−e(iyl, ixj) = e

(
n∑

q=1

mlqxq,
n∑

p=1

m−1
jp yp

)

=

n∑

p=1

n∑

q=1

m−1
jp mlqnqp

=
n∑

p=1

m−1
jp (MN)lp

=

n∑

p=1

m−1
jp ((MN)T )pl

= (M−1(MN)T )jl.

Hence, e(iv2, iv1) = −e(v1, v2), for all v1 ∈ ReV and v2 ∈ ImV , if and
only if (MN)T = MN . This shows the first statement.

To prove the second statement, choose ai ∈ R, i = 1, . . . , n, and
compute

e(i
n∑

p=1

apyp,
n∑

q=1

aqyq) =
n∑

p,q=1

apaqe(iyp, yq)

= −
n∑

p,q=1

apaqe(
n∑

j=1

mpjxj, yq)

= −
n∑

p,q=1

ap(MN)pqaq

= −aT ·MN · a.

Hence, e(iv, v) > 0, for all nonzero v ∈ ImV , if and only if MN is
negative definite. This proves the proposition. �

As a consequence of Theorem 66, Remark 73 and Propositions
74 and 75 we have the following corollary.

Corollary 76. If (W,Λ) is a lattice over R then F(W,Λ) is isomorphic
to the group Sk(M), where k is the degree of connectedness of Λ and M
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is the real n×n-matrix associated to Λ as in Remark 71. Furthermore,
there exists an abelian variety X over R such that X(C) is isomorphic
to V/Λ, as complex tori with a real structure, if and only if Sk(M)
contains a matrix N such that MN is negative definite. Moreover,
then the Néron-Severi group NS(X) of X is isomorphic to Sk(M). In
particular, the base number of an n-dimensional abelian variety over R

is smaller than or equal to 1
2n(n+ 1).

Proof. Indeed, Proposition 74 and Proposition 75 imply that the group
F(W,Λ) is isomorphic to the group Sk(M). Moreover, it follows from
Theorem 66 that there exists an abelian variety X over R such that
X(C) is isomorphic to V/Λ if and only if Sk(M) contains a matrix N
such that MN is negative definite. Hence, by Remark 73, NS(X) is
isomorphic to Sk(M).

Therefore, we only have to prove that the rank of Sk(M) is smaller
than or equal to 1

2n(n+1), for any nonsingular real n×n-matrixM . For
this, observe that the subgroup Mn(Z) of Mn(R) is a discrete subgroup.
Moreover, the subspace

{A ∈ Mn(R) | (MA)T = MA}
of Mn(R) has R-dimension 1

2n(n+1), sinceM is nonsingular. Therefore,

the rank of the group Sk(M) is smaller than or equal to 1
2n(n+ 1). �

Remark 77. The upper bound on the base number of an abelian va-
riety over R is sharp, as is shown by the following example.

Let W = Rn, so that V = Cn and the action of G on Cn is the
standard action. Choose an integral n×n-matrix M with d = detM 6=
0. Let Λ ⊆ Cn be the lattice generated by

e1, . . . , en, iM
Te1, . . . , iM

Ten,

where e1, . . . , en is the standard basis for Cn. Since the group S0(M)
contains the group

{dM−1A | A is a symmetric integral n×n-matrix},
the rank of S0(M) is 1

2n(n + 1). Moreover, this also proves that there
exists a matrix N ∈ S0(M) such that MN is negative definite. There-
fore, by Corollary 76, there exists an abelian variety X over R such that
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X(C) is isomorphic to Cn/Λ, as complex tori with a real structure. By
Corollary 76, the base number of X is 1

2n(n+ 1). �

2.5 Real abelian varieties

Definition 78. A group (G, ·) which is, at the same time, a connected
real algebraic variety is a real algebraic group if

m:G×G −→ G

(x, y) 7−→ xy

and

i:G −→ G

x 7−→ x−1

are morphisms of real algebraic varieties. A morphism of real alge-
braic groups from (G,m) to (G′,m′) is a morphism f :G → G′ of real
algebraic varieties such that

m′ ◦ (f × f) = f ◦m.

Of course, “connected” in Definition 78 is with respect to the Zariski-
topology. For example, the real elliptic curve E ⊆ P2(R) defined by
the equation

Y 2Z = X3 −XZ2

is a real algebraic group. However, E has two components with respect
to the strong topology on E.

Note that a real algebraic group is nonsingular. It follows that every
real algebraic group is irreducible.

Observe that, if X is an algebraic group over R, the real part R(X)
of X is a real algebraic group. For, the set of real points X(R) is
nonempty and X is nonsingular and irreducible hence, by Remark 10,
X(R) is dense in X. Therefore, the real part of X is an irreducible real
algebraic variety (by Proposition 8). The morphisms m:X ×X → X
and i:X → X induce morphisms

R(m):R(X) ×R(X) −→ R(X)

R(i):R(X) −→ R(X)
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which turn R(X) into a real algebraic group.
The following theorem shows that every real algebraic group is the

real part of a unique algebraic group over R.

Theorem 79. Every real algebraic group G has a complexification (G′, i),
such that G′ is an algebraic group over R and i:G → R(G′) is an iso-
morphism of real algebraic groups. Furthermore, the algebraic group G′

over R is unique up to isomorphism.

Proof. Let U ⊆ G be a nonempty affine open subset. Clearly, U has
a complexification (V, j). Now, V has a rational group law, hence, by
a theorem of A. Weil [1], there exist an algebraic group G′ over R and
a birational morphism f :V −−→ G′, which respects the group law.
In particular, the birational mapping i = R(f) ◦ j:G −−→ R(G′)
respects the group law. Consequently, i is an isomorphism. �

We denote the complexification of a real algebraic group G by C(G).
Observe that C extends to a functor from the category of real algebraic
groups to the category of algebraic groups over R. This establishes an
equivalence between both categories.

Definition 80. A real abelian variety is a real algebraic group G such
that C(G) is an abelian variety over R. A real elliptic curve is a real
abelian variety of dimension 1. A morphism of real abelian varieties is
just a morphism of real algebraic groups.

In [14] real abelian varieties were called real algebraic groups of
abelian type. However, we prefer the former name.

Since an abelian variety over R is commutative (Section 2.1), every
real abelian variety is commutative. Furthermore, as a consequence of
Theorem 42 and Theorem 43, real abelian varieties satisfy the following
remarkable property.

Theorem 81. If X and Y are real abelian varieties and

f :X −−→ Y
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is a rational mapping of real algebraic varieties then, up to translation,
f is a morphism of real abelian varieties, i.e.

τ−P ◦ f :X −→ Y

is a morphism of real abelian varieties, where P = f(O) and τ−P is
translation with −P .

Corollary 82. If X and Y are real abelian varieties then the following
conditions are equivalent:

(i) X and Y are birationally isomorphic as real algebraic varieties,
(ii) X and Y are isomorphic as real algebraic varieties,
(iii) X and Y are isomorphic as real abelian varieties.

Since abelian varieties over R are projective (see Section 2.1), real
abelian varieties are affine, by Remark 17. As an example, we will
prove that every real elliptic curve can be embedded into R2 as a closed
subvariety.

Example 83. Let E be an elliptic curve over R. We will prove that
there exists an embedding of the real part R(E) of E into R2 as a closed
subvariety.

Choose a closed point P ∈ E, such that the residue field at P is
isomorphic to C. Then, P has degree 2 as a divisor on E and, by
Riemann-Roch,

dimR Γ(E,L(nP )) = 2n, for n ≥ 0,

where L(D) is the invertible subsheaf of the constant sheaf KE =
R(E) of rational functions determined by the divisor D on E. Choose
x ∈ Γ(E,L(P )) such that {1, x} is a basis. Then, there exists y ∈
Γ(E,L(2P )) such that {1, x, x2, y} is a basis for Γ(E,L(2P )). Now,
{1, x, x2, x3, y, xy} is linearly independent in Γ(E,L(3P )). For, if there
exist real numbers λ, µ such that λx3 + µxy ∈ Γ(E,L(2P )), then
λx2 + µy is an element of Γ(E,L(P )). This implies that λ = µ = 0.
Hence {1, x, x2, x3, y, xy} is linearly independent. In the same way, one
proves that

{1, x, x2, x3, x4, y, xy, x2y} ⊆ Γ(E,L(4P ))
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is independent, hence this set is a basis for Γ(E,L(4P )). But y2 is in
Γ(E,L(4P )) too. Hence, modifying y if necessary,

y2 = f(x),

for some real polynomial f ∈ R[X] of degree 4.
It is easy to see that f has no multiple factors in R[X]. For, if f

has multiple factors then there are two cases, f is a square or there
exists a linear polynomial l such that l2 divides f . In the latter case,
y/l is a linear combination of 1, x. Hence, y is a linear combination of
1, x, x2. In the former case, there exists a polynomial g of degree 2 such
that f = g2. But then, y = ±g and y is again a linear combination of
1, x, x2. Both cases lead to a contradiction since {1, x, x2, y} is linearly
independent. It follows that the curve F ⊆ P2

R given by the equation

Y 2Z2 = Z4f

(
X

Z

)

has genus 1.
The rational functions x and y give rise to a morphism ϕ:E → F ,

given by ϕ = (x: y: 1). Since the mapping x:E → P1
R , of degree 2,

factors through ϕ, the morphism ϕ is birational.
Now, F has only one singular point, namely the point Q = (0: 1: 0).

Since ϕ−1{Q} = {P},

ϕ|E−{P}:E − {P} −→ F − {Q}

is an isomorphism. Clearly, F −{Q} is contained in the affine open set
{Z 6= 0}, which is isomorphic to A2

R. Since P 6∈ E(R), the real part
R(E) of E is isomorphic to the real algebraic curve y2 = f(x) in R2.

As a concrete example, let us take for E the elliptic curve over R

in P2
R defined by the equation Y 2Z = X3 + Z3. As usual, let O be the

point at infinity, i.e. O = (0: 1: 0), and let x = X/Z and y = Y/Z be
rational functions on E.

The pair of conjugate complex points (1
2
± 1

2

√
−3: 0: 1) defines a

closed point P of E. Put

u =
y

x2 − x+ 1
and v =

x2 + 2x− 2

x2 − x+ 1
.
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Then, {1, u} is a basis for Γ(E,L(P )) and {1, u, u2, v} is a basis for
Γ(E,L(2P )). Furthermore,

3u4 − 6u2 + v2 = 1.

It follows from the general discussion above that the morphism ϕ =
(u: v: 1) gives rise to an isomorphism between E(R) and the real alge-

-1.5 -1 -0.5 0 0.5 1 1.5

-2

-1

0

1

2

Figure 2.1: the real algebraic curve 3u4 − 6u2 + v2 = 1

braic curve 3u4 − 6u2 + v2 = 1 in R2 (Figure 2.1). �

2.6 The topology of real abelian varieties

In this section, X will be a real abelian variety, Y its complexification
C(X) and M the complex Lie group Y (C). We know from Section 2.4
that there exist a lattice (W,Λ) over R and a G-equivariant mapping

π:V −→M,

where V = W ⊗R C and G is the Galois group of C/R, such that π
induces an isomorphism

π̃:V/Λ −→M
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of complex Lie groups. In particular, the restriction of π̃ to (V/Λ)G is
an isomorphism of real Lie groups from (V/Λ)G onto Xs (considered as
a submanifold of M).

The following corollary is, in fact, a corollary of Proposition 70. Let
us define the mapping p2:V → ImV by p2(z) = 1

2
(z − σ(z)).

Corollary 84. Let W be a real vector space of dimension n and let
Λ ⊆ V , where V = W ⊗R C, be a lattice, invariant under the action
of G on V . Let k be the degree of connectedness of Λ. Denote the
canonical mapping V → V/Λ by π. Then,

(1
2Im Λ)/p2(Λ)

ϕ−→ H

[z] 7−→ π(z + ReV )

defines an isomorphism, where H is the group of connected components
of (V/Λ)G and [z] denotes the class of z modulo p2(Λ). In particular, H
is isomorphic to (Z/2Z)n−k and the number of connected components
of (V/Λ)G is 2n−k.

Proof. Observe that, for z ∈ V , π(z) is in (V/Λ)G if and only if z−σ(z)
is in Im Λ or, equivalently, p2(z) is in 1

2Im Λ. Moreover, if π(z) is in

(V/Λ)G then the connected component of (V/Λ)G containing π(z) is
π(z + ReV ). Hence, ϕ is surjective. Injectivity of ϕ follows from the
fact that π(z + Re V ) = π(ReV ) if and only if there exists λ ∈ Λ such
that p2(λ) = z, for any z ∈ 1

2Im Λ. Therefore ϕ is an isomorphism. By

Corollary 70, (1
2Im Λ)/p2(Λ) is isomorphic to (Z/2Z)n−k. �

As an immediate consequence, we have the following proposition
(see [11] for a different proof).

Proposition 85. If X is a real abelian variety of dimension n then
the number of connected components of X with respect to the strong
topology on X is a power of 2 and is smaller than, or equal to 2n. Each
component is homeomorphic to the n-fold cartesian product (S1)n of the
1-sphere S1. �
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Remark 86. Observe that for each nonnegative integer n and each in-
teger i with 0 ≤ i ≤ n there exists a real abelian variety X of dimension
n such that the number of connected components of X with respect to
the strong topology is 2i. �

We extend the definition of degree of connectedness to real abelian
varieties. The degree of connectedness of a real abelian variety X is
k, where 2dim X−k is the number of connected components of X with
respect to the strong topology. According to Corollary 84, if (W,Λ) is
a lattice over R such that

(V/Λ)G ∼= Xs,

as topological manifolds, then the degrees of connectedness of both Λ
and X coincide.

We want to compute the group Halg
n−1(X,Z/2Z) of codimension-1 cy-

cles that are realizable by real algebraic subvarieties of X. As explained
in Section 1.2, computing the subgroup

w1(V
1
alg(X))

of H1
alg(Xs,Z/2Z) amounts to the same. That is, we should compute

first Stiefel-Whitney classes of all strongly algebraic line bundles on X.
For this, let {Ci}i∈I be the set of strongly connected components

of X. Let x1, . . . , xn be a Z-basis for Re Λ and y1, . . . , yn a Z-basis for
ImΛ such that

1
2(x1 + y1), . . . ,

1
2(xk + yk), x1, . . . , xn, yk+1, . . . , yn

is a Z-basis for Λ. By Corollary 84, there is a bijection between the set
I and the set

I ′ = {
n∑

j=k+1

εj
1
2yj | εj ∈ {0, 1}, j = k + 1, . . . , n},

the image of each element of I ′ belonging to precisely one component
Ci. Therefore, we may as well assume that I = I ′. Let W ′ = I + ReV .
Then, π maps W ′ onto X. Hence, the restriction ρ of π to W ′ induces
a homeomorphism

ρ̃:W ′/Re Λ −→ Xs
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and is the universal covering ofXs. As a consequence, we have a natural
isomorphism

h:H1(Xs,Z/2Z) −→ IHom(Re Λ,Z/2Z),

where AB denotes the set of all mappings from the set A into the set
B.

Recall that, if (α, F ) is an Appell-Humbert datum over R for (W,Λ),
the group G acts on the complex line bundle L(α, F ). Clearly,

L(α, F )G

is a real line bundle over MG = X.
In the next statement we shall use notation introduced above. In

particular, X is a real abelian variety, (W,Λ) is a lattice over R and

ρ̃:W ′/Re Λ −→ Xs

is an isomorphism.

Lemma 87. For every strongly algebraic line bundle L on X there ex-
ists an Appell-Humbert datum (α, F ) over R for (W,Λ) such that

L(α, F )G ∼= ρ̃?L.

Conversely, if (α, F ) is an Appell-Humbert datum over R for (W,Λ)
then there exists a strongly algebraic line bundle L on X such that

ρ̃?L ∼= L(α, F )G.

Moreover, identifying H1(Xs,Z/2Z) with IHom(Re Λ,Z/2Z) through h,
the first Stiefel-Whitney class of such a line bundle on X is the element

w ∈ IHom(Re Λ,Z/2Z),

defined by

w(c)(λ) = α(λ)(−1)E(λ,2r(c))

where λ ∈ Re Λ, c ∈ I, E = Im (F ⊗ C) and Z/2Z = {−1, 1}.
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Before proving this theorem, let us draw some conclusions. Let

ω: AH(W,Λ) −→ IHom(ReΛ,Z/2Z),

be defined by ω(α, F ) = w, where w(c)(λ) = α(λ)(−1)E(2c,λ), for all
λ ∈ Re Λ and c ∈ I.

Corollary 88. One has

dimZ/2ZH
alg
n−1(X,Z/2Z) = dimZ/2Z imω.

We shall now compute the dimension of Halg
n−1(X,Z/2Z) in terms of

the group Sk(M) introduced in Section 2.4. Let M be the real n×n-
matrix associated to Λ as in Remark 71. Let Tk(M) be the subgroup
of Sk(M) consisting of integral matrices N = (njl) such that

njj ≡ 0 mod 4, for j = 1, . . . , k,
njl ≡ 0 mod 2, for j, l > k.

Observe that Sk(M)/Tk(M) is a Z/2Z-vector space.

Theorem 89. There exists an exact sequence

0 −→ (Z/2Z)n−k −→ imω −→ Sk(M)/Tk(M) −→ 0.

In particular,

dimZ/2ZH
alg
n−1(X,Z/2Z) = n− k + dimZ/2Z Sk(M)/Tk(M).

Proof. By Remark 73 and Corollary 76, we have an exact sequence

0 −→ HomG(Λ, S1) −→ AH(W,Λ)
ϕ−→ Sk(M) −→ 0

Consider HomG(Λ, S1) as a subgroup of AH(W,Λ). It is clear from
Proposition 72 that

ω(HomG(Λ, S1)) ∼= (Z/2Z)n−k.

Hence, to prove the statement it suffices to show that

ϕ−1(Tk(M)) = HomG(Λ, S1) + kerω.
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This is equivalent to ϕ(kerω) = Tk(M), since kerϕ = HomG(Λ, S1).
Let us prove ϕ(kerω) = Tk(M).

Suppose (α, F ) is an Appell-Humbert datum over R for (W,Λ) and
N = (njl), where

njl = E(xj, yl)

and, as usual, E = Im(F ⊗ C). We know from Proposition 72 that

α(xj) = (−1)
1

2
njj , for j = 1, . . . , k. (2.1)

By definition of ω, the Appell-Humbert datum (α, F ) is in the kernel
of ω if and only if

α(xj) = (−1)E(2r(c),xj), for j = 1, . . . , n and c ∈ I.

Then, ω(α, F ) = 0 implies that α(xj) = 1, for every j, and njl is
even, if j, l > k. By (2.1), the matrix N is an element of Tk(M).

On the other hand, if N is an element of Tk(M) then njj is divisible
by 4, for j = 1, . . . , k. Hence, by Proposition 72, there exists a G-
equivariant mapping α from Λ into S1 such that α(xj) = 1, for every
j, and (α, F ) is an Appell-Humbert datum over R for (W,Λ). Since

njl ≡ 0 mod 2,

for j = 1, . . . , n and l > k, we have that

w(c)(xj) = α(xj)(−1)E(2r(c),xj) = 1,

for every j and c ∈ I. Therefore, N is an element of ϕ(kerω). This
proves the proposition. �

Corollary 90. If X is connected with respect to the strong topology
then

dimZ/2ZH
alg
n−1(X,Z/2Z) = dimZ/2Z Sn(M)/Tn(M).

Example 91. Let W = Rn and let x1, . . . , xn be the standard basis for
W . Let yj = ixj, for every j. Then, for every permutation τ of the set
{1, . . . , n},

1
2
(x1 + yτ(1)), . . . ,

1
2
(xn + yτ(n)), x1, . . . , xn
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is a Z-basis for a lattice Λτ in Cn. Clearly, (W,Λτ) is a lattice over R

and there exists, for every permutation τ , an abelian variety Yτ over R

such that
Yτ (C) ∼= Cn/Λτ ,

G-equivariantly. Let Xτ be the real part R(Yτ ) of Yτ . Then, Xτ is a
strongly connected real abelian variety of dimension n. We will prove
that

dimZ/2ZH
alg
n−1(Xτ ,Z/2Z) = n− p, (2.2)

where p is half of the number of elements of the set {1, . . . , n} that are
fixed by τ 2 but not by τ . Equivalently, if we write the permutation
τ as the product of disjoint cycles, p is the number of 2-cycles in this
factorization of τ .

For example, taking n = 2, we have two real abelian varieties, X(1)

and X(12), where (1) is the trivial permutation and (12) is the nontrivial
permutation of {1, 2}. By (2.2), all homology cycles of X(1) are realiz-
able by real algebraic subvarieties of X(1) (indeed, X(1) is isomorphic to
the product of two strongly connected real algebraic curves), while

dimZ/2ZH
alg
1 (X(12),Z/2Z) = 1.

For the proof of (2.2), observe that x1, . . . , xn is a Z-basis for Re Λτ

and yτ(1), . . . , yτ(n) is a Z-basis for Im Λτ . Moreover, M is just the
permutation matrix Pτ defined by

(Pτ )jl = δτ(j)l,

where δ is the Kronecker delta function. Hence,

Sn(M) = {N ∈Mn×n(Z) | N ≡ 0 mod 2,

N ≡ NT mod4 and (PτN)T = PτN}

and
Tn(M) = {N ∈ Sn(M) | ∀j:Njj ≡ 0 mod 4}.

Therefore, the mapping ψ from Sn(M) into (Z/2Z)n, which assigns to
N the element

(1
2N11 mod2, . . . , 1

2Nnn mod2)
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of (Z/2Z)n, has as kernel Tn(M). Let us compute the image of ψ.
For an n×n-matrix N , the condition (PτN)T = PτN is equivalent

to
Nτ−1(l)τ(j) = Njl, for all j, l.

Therefore, (a1, . . . , an) is in the image of ψ if and only if aτ(j) = aj,
for every j fixed by τ 2. Hence, the Z/2Z-dimension of the image of
ψ is equal to n − p, where p is half of the number of elements of the
set {1, . . . , n} that are fixed by τ 2 but not by τ . By Theorem 89, this
proves (2.2). �

Corollary 92. If X is a real abelian variety of dimension n and with
degree of connectedness k then

n− k ≤ dimZ/2ZH
alg
n−1(X,Z/2Z) ≤ min{b+ n− k, n+ (n− k)2},

where b is the base number of X.

Proof. It follows from Corollary 76 and the definition of Tk(M) that

0 ≤ dimZ/2Z Sk(M)/Tk(M) ≤ min{b, k + (n− k)2}.

The corollary follows now from Theorem 89. �

Corollary 93. If X is a real abelian variety of dimension n then
(i) Halg

n−1(X,Z/2Z) = 0 implies X is strongly connected, and

(ii) Halg
n−1(X,Z/2Z) = Hn−1(Xs,Z/2Z) implies X is strongly con-

nected or X is a real elliptic curve.

Proof. The first assertion is clear from Corollary 92. For the proof of
the second assertion, observe that

dimZ/2ZHn−1(Xs,Z/2Z) = 2n−kn,

where n is the dimension of X and k its degree of connectedness. By
Corollary 92, if all codimension-1 homology classes are realizable by
real algebraic subvarieties of X then

2n−kn ≤ n+ (n− k)2.
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Assume n ≥ 2. Then, k 6= n− 1, for

2n−(n−1)n = 2n 6≤ n+ 1 = n+ (n− (n− 1))2.

At the same time, k 6< n− 1, for if n− k > 1 then

2n−kn > (1 + n− k)n

= n+ (n− k)n

≥ n+ (n− k)2.

Hence, k = n and X is strongly connected. �

Let us now turn to the proof of Lemma 87. The first part is easy
to prove.

Proof of the first part of Lemma 87. On the one hand, given a strongly
algebraic line bundle L on X, there exists, by Lemma 21, an invertible
sheaf L on the abelian variety Y over R such that the real part R(L)
of L is isomorphic to L. Then, by Theorem 66, there exists an Appell-
Humbert datum (α, F ) over R for (W,Λ) such that

L(α, F ) ∼= π̃?L(C),

G-equivariantly. Hence,

L(α, F )G ∼= ρ̃?L.

On the other hand, if (α, F ) is an Appell-Humbert datum over R for
(W,Λ) then we know from Theorem 66 that there exists an invertible
sheaf L on Y such that

π̃?L(C) ∼= L(α, F ),

G-equivariantly. By Lemma 21, the real part L = R(L) is a strongly
algebraic line bundle on X. Moreover,

ρ̃?L ∼= L(α, F )G.

This proves the first part of Lemma 87. �
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For the proof of the second part of Lemma 87 it is convenient to
consider a more general situation.

Suppose the topological manifold N is a disjoint union of finitely
many copies of Rn. Let the abelian group A = Zn act on each connected
component of N in the standard way. Then the quotient space M of
N by the action of A is a compact topological manifold. Since the
canonical mapping ρ:N → M is the universal covering of M , we have
a natural isomorphism

h:H1(M,Z/2Z) −→ IHom(A,Z/2Z),

where {Ci}i∈I is the set of connected components of N .
If L is a topological line bundle on M , its first Stiefel-Whitney class

(see Section 1.2) w1(L) is an element of the first cohomology group
H1(M,Z/2Z). We will compute h(w1(L)).

Since N is the disjoint union of contractible spaces, ρ?L is a trivial
line bundle on N . If we choose an isomorphism

ρ?L −→ N × R,

we get an action of A on N×R such that the quotient of N ×R by this
A-action is a line bundle on M , isomorphic to L. Clearly, there exist,
for every g ∈ A, continuous mappings

eg:N −→ R?

such that the action of A on N × R is

g · (n, v) = (n+ g, eg(n)v),

for every v ∈ R, n ∈ N and g ∈ A. Since this should define an A-action,

e:A −→ C?

is a 1-cocycle, where C? is the group of nonvanishing continuous real-
valued functions on N and A acts on C? as

(g · f)(n) = f(n+ g),

for every n ∈ N , f ∈ C? and g ∈ A.



102.6. THE TOPOLOGY OF REAL ABELIAN VARIETIES 81

We define a mapping w from the group V 1(M) of (isomorphism
classes of) topological line bundles on M into IHom(A,Z/2Z) by

w(L)(c)(g) = sign(eg(x)),

where x is an arbitrary element of the connected component c of N
and g is an element of A. Indeed, one can check that w(L), as defined
above, is independent of the choice of the isomorphism between ρ?L
and N ×R and depends only on the isomorphism class of L. Moreover,

w:V 1(M) −→ IHom(A,Z/2Z)

is a morphism of groups and is natural with respect to N and A.

Lemma 94. If L is a topological line bundle on M then

w(L) = h(w1(L)).

Proof. Both mappings w and h ◦w1 are natural with respect to N and
A. Hence, we may assume that N is connected, that is

N = Rn and A = Zn.

Then, M is isomorphic to the n-fold product of the 1-sphere S1. Since

V 1((S1)n) ∼= (V 1(S1))n,

we have finished the proof if we show the statement for n = 1. But for
this case the statement is trivial. �

Now we are ready to prove the last part of Lemma 87.

Proof of the second part of Lemma 87. Let (α, F ) be an Appell-Humbert
datum for (W,Λ). Then, identifying W ′/ReΛ and Xs via ρ̃, one sees
that L = L(α, F )G is a line bundle on Xs. According to Lemma 94,
the first Stiefel-Whitney class w1(L) of L is w(L), under the identifica-
tion of H1(M,Z/2Z) with IHom(G,Z/2Z) through h. Let us compute
w(L).
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Let eλ be the holomorphic functions associated to the Appell-Hum-
bert datum (α, F ⊗ C). Then, by definition, L(α, F ) is the quotient of
V × C by the action of Λ given by

λ(v, z) = (v + λ, eλ(v)z),

where z ∈ C, v ∈ V = W ⊗ C and λ ∈ Λ. In particular, L(α, F )�Xs
is

the quotient of W ′ × C by the restriction of this action to Re Λ. Since
L is a real sub-bundle of L(α, F )�Xs

, there should be a real sub-bundle
of W ′ × C that has L as a quotient. Let us compute this sub-bundle.

Choose a point v ∈ W ′ and let λ ∈ Λ be such that σv − v = λ.
Then, for every z ∈ C,

σ(v, z) = (σv, z)

= (v + λ, z)

= (v, eλ(v)
−1z).

Hence, if we put

L′ = {(v, z) ∈W ′ × C | eλ(v)
−1z = z, where λ = σv − v}

then the quotient of L′ under the action of Re Λ is L.
To compute w(L) we need to have L as a quotient of W ′×R under

some action of Re Λ. This can easily be arranged. Let, for v ∈W ′ and
λ = σv − v,

fλ(v) = α(λ)−
1

2e−
1

2
πH(v,λ)− 1

4
πH(λ,λ),

for some choice of α(λ)−
1

2 , where H = F ⊗ C. Then,

fλ(v)
2 = eλ(v)

−1.

Hence, the mapping

W ′ × R −→ W ′ × C

(v, x) 7−→ (v, fλ(v)x),

where λ = σv − v, maps W ′ × R onto L′. Via this isomorphism we get
an action of Re Λ on W ′ × R which has its quotient isomorphic to L.
This action is

µ(v, x) = (v, fλ(v + µ)−1eµ(v)fλ(v)x),
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for every x ∈ R, v ∈ W ′ and µ ∈ Re Λ, where λ = σv − v. Hence, to
compute w(L) we should compute the sign of

dµ(v) = fλ(v + µ)−1eµ(v)fλ(v).

Since

1
2H(v + µ, λ) + 1

4H(λ, λ) +H(v, µ) + 1
2H(µ, µ)+

−1
2H(v, λ) − 1

4H(λ, λ) =

= 1
2H(µ, λ) +H(v, µ) + 1

2H(µ, µ)

= 1
2H(µ, λ) + 1

2H(µ, 2σv) + 1
2H(µ, µ)

= 1
2H(µ, λ) + 1

2H(µ, σv + v + λ) + 1
2H(µ, µ)

= H(µ, λ) + 1
2H(µ, µ+ σv + v),

where v ∈W ′, µ ∈ Re Λ and λ = σv − v, we have

dµ(v) = α(µ)eπH(µ,λ)+
1
2
πH(µ,µ+σv+v).

Since µ + σv + v ∈ ReV , the number H(µ, µ + σv + v) is real, and,
since µ ∈ Re Λ and λ ∈ Im Λ, the number H(µ, λ) is purely imaginary,
i.e. H(µ, λ) = iE(µ, λ), where E = ImH. Therefore,

sign(dµ(v)) = α(µ)(−1)E(µ,λ).

Observe that, if c ∈ I is the connected component of Xs containing
ρ(v), the component ρ(−1

2λ + ReV ) is equal to c. Hence, there exists
an x ∈ ReV such that −λ+ x = 2r(c). Then

E(µ, 2r(c)) = E(µ,−λ+ x) = −E(µ, λ).

Therefore,

w(c)(λ) = w1(L)(c)(λ) = α(λ)(−1)E(λ,2r(c)),

where λ ∈ Re Λ and c ∈ I. This finishes the proof of Lemma 87. �
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2.7 The topology of the underlying real
algebraic structure of elliptic curves
over C

In this section we study the group

Halg
1 (RE,Z/2Z),

for an elliptic curve E over C. Recall from Section 1.5 that RE is the
underlying real algebraic structure of the elliptic curve E over C. Hence

RE is a real algebraic torus which is, moreover, an affine real algebraic
variety, as observed in Section 2.5.

We start by studying the Weil restriction of an abelian variety over
C with respect to the field extension C/R.

Suppose X is an abelian variety over C. Then, by Theorem 51,
there exists a lattice Λ in some complex vector space V such that

V/Λ ∼= X(C).

Then, by Example 58, V σ/Λσ is isomorphic to Xσ(C). Moreover, we
have a commutative diagram

V/Λ

V σ/Λσ

X(C)

Xσ(C)
?
ϕV

?
ϕσ(C)

-

-

where ϕV is the mapping induced by

ϕV :V −→ V σ.

Define an action of the Galois group G of C/R on V ⊕ V σ by

σ · (v, v′) = (ϕ−1
V (v′), ϕV (v)), (2.3)

for any v ∈ V and v′ ∈ V σ. Then, the action of σ is anti-linear, hence,
letting W = (V ⊕ V σ)G, we have a lattice (W,Λ ⊕ Λσ) over R. By
construction of the Weil restriction (see Section 1.4)

(C ⊗R W )/(Λ ⊕ Λσ) ∼= N(X)(C),
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G-equivariantly. This proves the following proposition.

Proposition 95. If X is an abelian variety over C and Λ a lattice in
some complex vector space V such that V/Λ is isomorphic to X(C) then

(C ⊗R W )/(Λ ⊕ Λσ) ∼= N(X)(C),

G-equivariantly, where W = (V ⊕V σ)G with the action of G on V ⊕V σ

given by (2.3). �

Example 96. As an example, let us show, using Proposition 95, that
for every positive integer d such that d ≡ 3 mod 4, there exist real
algebraic curves C1, C2 such that

C1 × C2
∼= RE,

where E is the elliptic curve over C such that E(C) ∼= C/Λτ , and

τ = 1
2(1 + i

√
d). As a consequence,

dimZ/2ZH
alg
1 (RE,Z/2Z) = 2,

whenever E(C) ∼= C/Λτ , where τ = 1
2
(1 + i

√
d), for some positive

integer d ≡ 3 mod 4.
According to Proposition 95 and Example 58,

N(E)(C) ∼= C2/Λτ ⊕ Λτ ,

G-equivariantly, where G acts on C2 by

σ · (z, w) = (w, z),

for any z, w ∈ C. Let L be the C-linear endomorphism of C2 given by

L(z, w) =

(
z + w

2
,
z − w

2i

)
.

Then, taking the domain of L equipped with the action of G defined
above, and the codomain of L equipped with the standard action of G,
the mapping L is G-equivariant. In particular,

N(E)(C) ∼= C2/Λ,
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where Λ = L(Λτ ⊕ Λτ ) ⊆ C2 is the lattice generated by x1, x2,
1
2(x1 +

y1),
1
2(x2 + y2), where

x1 =

(
1
0

)
, x2 = 1

2

(
1√
d

)
, y1 =

(
0
i

)
, and y2 = 1

2

(
i
√
d

−i

)
.

Put x′2 = 1
2(d − 1)x1 + x2. Then, since d is odd, x′2 ∈ Λ. Moreover,

x1, x
′
2 is a Z-basis for Re Λ. One easily computes that

i
√
dx1 = y1 + 2y2 and i

√
dx′2 = d(y1 + y2).

Since y1 + 2y2, y1 + y2 is a Z-basis for Im Λ and

1
2(x1 + (y1 + 2y2)) = 1

2(x1 + y1) + y2 ∈ Λ

and

1
2(x

′
2 + (y1 + y2)) = 1

2(
1
2(d− 1)x1 + x2 + y1 + y2)

= 1
4(d− 3)x1 + 1

2(x1 + y1) + 1
2(x2 + y2) ∈ Λ,

we have an isomorphism

α: C/Λ1 × C/Λ2 −→ C2/Λ,

induced by the mapping from C2 into itself given by

(z, w) 7−→ (zx1, wx
′
2),

where

Λ1 = Z + Z1
2(1 + i

√
d) and Λ2 = Z + Z1

2(1 + i(
√
d)−1).

Observe that both lattices Λ1 and Λ2 are stable under complex conju-
gation and, moreover, α is G-equivariant (taking on both domain and
codomain of α the standard action of G). By Example 52 there exists
algebraic curves X1, X2 over R such that

Xj(C) ∼= C/Λj

G-equivariantly, for every j. In particular, X1 × X2 is isomorphic to
N(E). Therefore,

C1 × C2
∼= RE,

where Cj = R(Xj), j = 1, 2. �
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Example 97. Let us compute now the Z/2Z-dimension of the group

Halg
1 (RE,Z/2Z) in the case E is an elliptic curve over C such that

E(C) ∼= C/Λτ ,

where τ = i
√
d, for some positive integer d.

As in Example 96,

N(E)(C) ∼= C2/Λ,

where Λ = L(Λτ ⊕ Λτ ). Clearly, Λ is generated by

x1, x2,
1
2(x1 + y1),

1
2(x2 + y2),

where

x1 =

(
1
0

)
, x2 =

(
0√
d

)
, y1 =

(
0
i

)
, and y2 =

(
i
√
d

0

)
.

Put

M =

(
0 (

√
d)−1

√
d 0

)
.

Then, according to Corollary 90,

dimZ/2ZH
alg
1 (RE,Z/2Z) = dimZ/2Z S2(M)/T2(M).

One easily computes that S2(M) is the group of integral 2×2-matrices
(
k l
m kd

)

such that l ≡ m mod 4 and all k, l,m even. The subgroup T2(M) of
S2(M) consists of the matrices

(
k l
m kd

)
∈ S2(M)

such that k is divisible by 4. We see that the quotient S2(M)/T2(M)
has Z/2Z-dimension 1. Therefore,

dimZ/2ZH
alg
1 (RE,Z/2Z) = 1,
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whenever E is an elliptic curve over C such that E(C) ∼= C/Λτ , with
τ = i

√
d, for some positive integer d.

Observe that in the special case d ≡ 2 mod 4 every element A ∈
S2(M) which is nontrivial in the quotient S2(M)/T2(M) has nonzero
determinant. For, if

A =

(
k l
m kd

)

is not contained in T2(M) then k is even but not divisible by 4. Hence,

23 | k2d and 24 6 | k2d.

Since l ≡ m mod4,
23 | lm ⇒ 24 | lm.

Hence, k2d 6= lm and therefore detA is nonzero. This implies that
the nonzero class in Halg

1 (RE,Z/2Z) cannot be represented by a real

algebraic subgroup whenever E(C) ∼= C/Λτ , τ = i
√
d and d ≡ 2 mod 4.

For, let C ⊆ RE be a real algebraic subgroup of dimension 1 and
C ⊆ N(E) its closure in N(E). Then C is an elliptic curve over R.
Let L be the invertible sheaf on N(E) corresponding to the divisor C.
Clearly, L is isomorphic to the pull-back of some invertible sheaf under
the canonical morphism

N(E) −→ N(E)/C.

Therefore, if (α, F ) is an Appell-Humbert datum over R such that
L(α, F ) ∼= L, the bilinear form F is degenerate. This implies that
the matrix A ∈ S2(M) associated to F has zero determinant. It follows
that

[C] = 0

in Halg
1 (RE,Z/2Z). �

Recall that an elliptic curve E over C is said to have complex mul-
tiplication if End(E) 6= Z (cf. also Definition 102).

If E is an elliptic curve over C and τ ∈ C such that

C/Λτ
∼= E(C),
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then E has complex multiplication if and only if [Q (τ) : Q] = 2. More-
over, End(E) is then a subring of the field L = Q (τ). Since L is a
quadratic imaginary extension of Q, there exists a square-free negative
integer d such that

Q (
√
d) ∼= L.

Since L is the quotient field of End(E) and End(E) is finitely generated
as a Z-module, there exists a unique positive integer c such that

End(E) =

{
Z [c

√
d], if d 6≡ 1 mod 4

Z [c1
2
(1 +

√
d)], if d ≡ 1 mod 4

Then, the discriminant dE of End(E) is the ideal of Z generated by
4c2d in the case d 6≡ 1 mod 4 and c2d in the case d ≡ 1 mod 4.

The following statement is proved in [14].

Theorem 98. If E and F are elliptic curves over C with complex mul-
tiplication then

RE
∼= RF ⇐⇒ End(E) ∼= End(F ).

This enables us to compute the Z/2Z-dimension of Halg
1 (RE,Z/2Z)

in the case E has complex multiplication (see also [6]).

Theorem 99. If E is an elliptic curve over C with complex multipli-
cation then

dimZ/2ZH
alg
1 (RE,Z/2Z) = 2

if and only if the discriminant dE of End(E) is not divisible by 2. Oth-
erwise,

dimZ/2ZH
alg
1 (RE,Z/2Z) = 1.

Proof. Let E be an elliptic curve over C with complex multiplication.
Consider End(E) as a lattice Λ in C. By Example 52, there exists an
elliptic curve F over C such that

F (C) ∼= C/Λ.
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Clearly, End(F ) ∼= End(E). Therefore, by Theorem 98, it suffices to
compute

dimZ/2ZH
alg
1 (RF,Z/2Z).

The conclusion follows from Example 96 and Example 97. �

Corollary 100. [5] Let E be an elliptic curve over C with complex
multiplication. Then the underlying real algebraic structure RE of E is
isomorphic to the product C1 × C2 of two real algebraic curves C1 and
C2 if and only if the discriminant dE of End(E) is not divisible by 2.

Remark 101. The group Halg
1 (RX,Z/2Z), where X is an arbitrary

nonsingular projective curve over C, has been studied in [6], where a
slightly weaker version of Theorem 99 has been proved earlier by a
different method. �



Chapter 3

Real abelian varieties with

complex multiplication

In the first section of this chapter we introduce the notion of sufficiently
many complex multiplications for abelian varieties over C, as well as
over R. We prove some basic facts from which it becomes clear that
classification of real abelian varieties X admitting sufficiently many
complex multiplications is equivalent to classification of so-called Ga-
lois B-modules, where B is the center of the ring of endomorphisms
End(XC) of XC. Section 3.2 is devoted to classification of these mod-
ules. In the last section of this chapter, the results of Section 3.2 are
used to prove the classification theorem about the underlying real al-
gebraic structure of abelian varieties over C having sufficiently many
complex multiplications (Theorem 136) and the theorem concerning
the problem of the product structure of simple abelian varieties over C

having sufficiently many complex multiplications (Theorem 140). The-
orems 136 and 140 are the main theorems of this chapter.

3.1 Complex multiplication

Definition 102. An abelian variety X over C is said to have suf-
ficiently many complex multiplications if the endomorphism algebra
EndoX of X contains a field of degree 2 dimX over Q. In the case
dimX = 1 this is the same as “X has complex multiplication”.

91



92 10CHAPTER 3. REAL ABELIAN VARIETIES WITH CM

Remark 103. This definition is different from that in [25, p. 399].
Both definitions coincide in the case of simple abelian varieties over C.
In [25] an arbitrary abelian variety X over C is said to have sufficiently
many complex multiplications whenever X is isogenous to a product
of simple abelian varieties over C, each having sufficiently many com-
plex multiplications (in either sense). For us, X has sufficiently many
complex multiplications if and only if X is isogenous to Y m, for some
simple abelian variety Y over C having sufficiently many complex mul-
tiplications (Proposition 106). �

Example 104. If X is an elliptic curve over C then there exists τ ∈
C − R such that C/Λτ

∼= X(C), where

Λτ = Z + Zτ.

It is easy to check that X has complex multiplication if and only if
[Q (τ) : Q] = 2. �

Remark 105. If X is a simple abelian variety over C of dimension n
then it is proved in [23, p. 183] that

rankZ End(X) ≤ 2n.

Moreover, X has sufficiently many complex multiplications if and only
if

rankZ End(X) = 2n,

and then the endomorphism algebra EndoX of X is a field of degree
2n over Q.

If a field L is isomorphic to EndoX, for some simple abelian variety
X over C having sufficiently many complex multiplications then L is
called a CM-field. A CM-field has a unique totally real subfield K such
that

[L : K] = 2

(cf. [23, p. 210]). Moreover, the extension L/K is totally imaginary.
Conversely, we will see in Proposition 108 that every number field L
which is a totally imaginary extension of degree 2 of a totally real field
K, is a CM-field. �
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Let us study more closely what it means for a (possibly nonsimple)
abelian variety over C to have sufficiently many complex multiplica-
tions.

Proposition 106. Let X be an abelian variety over C. Then X has
sufficiently many complex multiplications if and only if X is isogenous
to Y m, for some simple abelian variety Y over C with sufficiently many
complex multiplications and some positive integer m.

Proof. Of course, if Y is a simple abelian variety over C with sufficiently
many complex multiplications then for every positive integer m, the
abelian variety Y m has sufficiently many complex multiplications. For,
by Remark 105, L = Endo Y is a field of degree 2 dimY over Q. Hence,

Endo (Y m) ∼= Mm(L),

the matrix algebra of order m over L. Clearly, Endo (Y m) contains a
field of degree 2m dimY over Q. Therefore, if X is isogenous to Y m

then X has sufficiently many complex multiplications.
Conversely, suppose X has sufficiently many complex multiplica-

tions. By Theorem 47, X is isogenous to

Xm1

1 × · · · ×Xmk

k ,

where X1, . . . , Xk are mutually nonisogenous simple abelian varieties
over C. If we put Di = EndoXi then

EndoX ∼=
k∏

i=1

Mmi
(Di).

Since EndoX contains a field of degree 2n over Q, where n is the
dimension of X, there exists j ≤ k such that Mmj

(Dj) contains a field
of degree 2n over Q. Such a field has necessarily its degree over Q less
than or equal to

mjdjej,

where ej is the degree of the center Kj of Dj and d2
j is the Kj-dimension

of Dj. Hence,

2n ≤ mjdjej ≤ mjd
2
jej ≤ 2mj dimXj,
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by Remark 105. Therefore, X is isogenous to X
mj

j and dj = 1, which
implies that Xj has sufficiently many complex multiplications. �

Suppose X is a simple abelian variety over C with sufficiently many
complex multiplications. According to Remark 105,

L = EndoX

is a field. The subring B = End(X) of L is finitely generated as a
Z-module and has L as its field of fractions, i.e. B is an order in L. Let
Λ be a lattice in some complex vector space V such that

V/Λ ∼= X(C).

As Λ is a lattice, the canonical mapping

R ⊗Z Λ −→ V

is an isomorphism of real vector spaces, even of R⊗Z B-modules. This
isomorphism induces a complex vector space structure on R⊗Z Λ which
is compatible with the R ⊗Z B-module structure since the action of B
on V is C-linear. Since Λ and B have the same Z-rank, R ⊗Z Λ is a
free R⊗Z B-module of rank 1. Therefore R⊗Z B has a complex vector
space structure, which, moreover, does not depend on the isomorphism

R ⊗Z B −→ R ⊗Z Λ

chosen, since the action of B on R⊗ZΛ is C-linear. Clearly this complex
vector space structure turns the R-algebra R⊗ZB into a C-algebra, that
is, we are given a morphism of R-algebras

Φ: C −→ R ⊗Z B.

By construction, the complex vector space structure on

(R ⊗Z B) ⊗B Λ

induced by Φ coincides with the complex vector space structure on
R ⊗Z Λ and

((R ⊗Z B) ⊗B Λ)/Λ ∼= X(C),

as complex tori.
More general we have the following proposition.
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Proposition 107. If X is an abelian variety over C with sufficiently
many complex multiplications and B is the center of the ring of endo-
morphisms End(X) of X then there exists a structure of a C-algebra

Φ: C −→ R ⊗Z B

on the R-algebra R ⊗Z B and there exists a B-module M such that

((R ⊗Z B) ⊗B M)/M ∼= X(C),

as complex tori.

Proof. By Proposition 106, there exists a simple abelian variety Y over
C having sufficiently many complex multiplications such that Y m and
X are isogenous. After chosing an isogeny, we may identify EndoX
with Endo (Y m). Of course, we may assume that

B ⊆ End(Y m).

By the discussion preceding this proposition, there exists a C-algebra
structure

Φ: C −→ R ⊗Z B

on the R-algebra R ⊗Z B and a B-module Λ such that

((R ⊗Z B) ⊗B Λ)/Λ ∼= Y (C).

Let M be a lattice in some complex vector space V such that the
complex tori V/M and X(C) are isomorphic. The chosen isogeny gives
us a mapping from Λm into M such that the induced mapping

(R ⊗Z B) ⊗B Λm −→ V

is C-linear. Therefore,

((R ⊗Z B) ⊗B M)/M ∼= X(C),

as complex tori. �
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One can reverse this construction. Suppose L is a number field
which is a totally imaginary degree 2 extension of a totally real field K
and B is an order in L. The canonical mapping

R ⊗Z B −→ R ⊗Q L

is an isomorphism of R-algebras. Therefore, giving a C-algebra struc-
ture on R⊗QL is equivalent to giving a C-algebra structure on R⊗ZB.
If σ1, . . . , σn are the embeddings of K into R then

R ⊗Q K ∼=
n∏

i=1

Ri,

as R-algebras, where Ri is the K algebra

K
σi−→ R.

Hence,

R ⊗Q L ∼=
n∏

i=1

Ri ⊗K L,

Since L/K is totally imaginary, Ri⊗K L is isomorphic to C, for every i.
Therefore, there exists exactly 2n structures of a C-algebra on R⊗Q L,
where n is the degree of K over Q.

Now, let us take a C-algebra structure Φ on R ⊗Z B. If M is a
torsion free finitely generated B-module then M can be considered as
a subgroup of the complex vector space (R ⊗Z B) ⊗B M . Clearly,

((R ⊗Z B) ⊗B M)/M

is a complex torus. The following proposition states that this complex
torus comes from an abelian variety over C.

Proposition 108. Let L be a totally imaginary degree 2 extension of a
totally real field K and let B be an order in L. Let Φ be a structure of a
C-algebra on R⊗ZB. If M is a torsion free finitely generated B-module
then there exists an abelian variety X = X(M,Φ) over C such that

X(C) ∼= ((R ⊗Z B) ⊗B M)/M,

as complex tori. In particular, X has sufficiently many complex multi-
plications and L is a CM-field.
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Proof. It suffices to prove the statement for M = Bm and then it
reduces to the case m = 1, and B is the ring of integers in L. This case
is proved in [23, p. 212]. �

Remark 109. Notice that the abelian variety X(B,Φ) over C, with
notation as in the preceding proposition, need not be simple. �

Example 110. If L is a quadratic imaginary extension of Q, that is,

L = Q (
√
d),

for some square-free negative integer d, then L is a CM-field. Let B be
any order in L. Since

R ⊗Z B ∼= R ⊗Q L ∼= C,

a C-algebra structure on R ⊗Z B corresponds to an embedding of L in
C. Therefore, there are exactly 2 C-algebra structures Φ1 and Φ2 on
R⊗ZB. If M is a torsion free finitely generated B-module then, clearly,

X(M,Φ1) ∼= X(Mσ,Φ2),

where Mσ is the conjugate B-module structure on M . Therefore, in
this case, one may fix an embedding of L in C, or equivalently, one may
fix a C-algebra structure Φ on R ⊗Z B, since every abelian variety X
over C with sufficiently many complex multiplications and

Center(EndoX) ∼= L

is isomorphic to some X(M,Φ). �

Example 111. Let m > 2 be an integer and let ξm be a primitive mth

root of unity. Then
L = Q (ξm)

is a CM-field. For, let

K = Q (ξm + ξ−1
m ).

Then [L : K] = 2 and K is totally real and L is a totally imaginary
extension of K. By Proposition 108, L is a CM-field. Let ϕ be the



98 10CHAPTER 3. REAL ABELIAN VARIETIES WITH CM

Euler ϕ-function . Then, if B is any order in L and Φ is a C-algebra
structure on R ⊗Z B,

dimX(B,Φ) = 1
2
ϕ(m),

since [L : Q] = ϕ(m). �

The construction of X(M,Φ) is functorial in the B-module M .
Hence, X(·,Φ) is a functor from the category of finitely generated tor-
sion free B-modules into the category of abelian varieties over C with
sufficiently many complex multiplications.

Proposition 112. Let L be a CM-field and B an order in L. If Φ
is a C-algebra structure on R ⊗Z B such that X(B,Φ) is simple then
the functor X(·,Φ) is an equivalence onto some full subcategory of the
category of abelian variety over C with sufficiently many complex mul-
tiplications, that is, for any finitely generated torsion free B-modules
M and N , the mapping

X(·,Φ): HomB(M,N) −→ Hom(X(M,Φ), X(N,Φ))

is a bijection.

Proof. It is clear that this mapping is injective. Moreover, the cokernel
of this mapping is torsion free. For, if ϕ is a morphism from X(M,Φ)
into X(N,Φ) then, in particular, there exists a Z-linear mapping ψ
from M into N such that

X(ψ,Φ) = ϕ.

Hence, if there exists an nonzero integer k such that kϕ is in the image
of X(·,Φ) then kψ is B-linear and then ψ is B-linear.

Therefore, it suffices to prove that

Q ⊗Z HomB(M,N) and Q ⊗Z Hom(X(M,Φ), X(N,Φ))

have the same dimension over Q. To prove this we may assume that
M = Bm and N = Bn. Since X(B,Φ) is simple,

End(X(B,Φ)) = B.
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Moreover, X(M,Φ) is isomorphic to X(B,Φ)m and X(N,Φ) is iso-
morphic to X(B,Φ)n. Therefore, both Q-dimensions are equal. The
proposition follows. �

Remark 113. For the functor X(·,Φ) to be full it is necessary that
X(B,Φ) is simple. For, if X(B,Φ) is not simple then, by Proposi-
tion 106, it is isogenous to Y m, for some m > 1 and some simple
abelian variety Y over C having sufficiently many complex multiplica-
tions. Then

rankZ End(X(B,Φ)) = m2rankZ End(Y ) = 2m dimX,

while rankZB = 2 dimX. �

Let us turn our attention to abelian varieties over R.

Definition 114. An abelian variety X over R is said to admit suffi-
ciently many complex multiplications if XC has sufficiently many com-
plex multiplications. In the case X has dimension 1 this is the same as
“X admits complex multiplication ”.

LetG be the Galois group of C/R and let σ be the nontrivial element
of G. If L is a CM-field and K its maximal totally real subfield then
any embedding of L in C is stable under σ. For, if L ⊆ C then K ⊆ R.
Hence, σ(K) = K. As L/K is Galois, σ(L) = L. Moreover, this shows
that there is a canonical isomorphism

G −→ Gal (L/K).

Sometimes, the image of σ ∈ G under this canonical mapping is again
denoted by σ.

If B is an order in L then, since the degree of the extension L/K is 2,
B is stable under the action of Gal (L/K). A B-module M , together
with an action of the group Gal (L/K) will be called a Galois B-module
if

τ(bm) = τ(b)τm,

for every m ∈ M , b ∈ B and τ ∈ Gal (L/K). With the obvious
definition of a morphism of Galois B-modules, we have a category of
Galois B-modules.
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Now, if M is a Galois B-module which is a finitely generated tor-
sion free B-module then we can construct an abelian variety over R

out of M , denoted by XR(M,Φ), having sufficiently many complex
multiplications, where Φ is some C-algebra structure on R ⊗Z B. This
construction goes as follows.

As σ acts on B we have an induced R-linear action of σ on R⊗ZB.
Therefore we have an R-linear action of σ on the complex vector space
V = (R ⊗Z B) ⊗M determined by

σ · λ⊗ b⊗m = (σ · λ⊗ b) ⊗ σm,

since M is a Galois B-module. Clearly,

Φ: C −→ R ⊗Z B

is G-equivariant. Therefore σ acts anti-linear on V . Hence, (W,M) is a
lattice over R, where W = V G, and, using Proposition 108, there exists
an abelian variety XR(M,Φ) over R such that

XR(M,Φ)(C) ∼=G (C ⊗R W )/M.

Clearly, XR(M,Φ) admits sufficiently many complex multiplications.
The following proposition shows that all abelian varieties over R

admitting sufficiently many complex multiplications are of this form.

Proposition 115. Let X be an abelian variety over R admitting suffi-
ciently many complex multiplications and let B be the center of the ring
End(XC). Then there exist a C-algebra structure Φ on R ⊗Z B and a
Galois B-module M , which is finitely generated and torsion free as a
B-module, such that

XR(M,Φ) ∼= X.

Proof. By Proposition 107, there exists a C-algebra structure Φ on
R ⊗Z B and a finitely generated torsion free B-module M such that

X(M,Φ) ∼= XC.

Hence, using this isomorphism, we have an action of G on X(M,Φ).
Since B is the center of End(X(M,Φ)), this gives rise to an action of
σ on B given by

σ · b = σ ◦ b ◦ σ−1.
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Then, there exists an automorphism τ of L/Q, where L is the quotient
field of B, such that

τ(b) = σ · b.
We will prove that τ is equal to the image of σ under the canonical
mapping G→ Gal (L/K), where K is the maximal totally real subfield
of L.

Let L′ ⊆ L be the fixed field of τ−1σ, where σ is considered to be an
element of Gal (L/K). As the action of both σ and τ on the complex
vector space R ⊗Z B is anti-linear, τ−1σ acts C-linear on R ⊗Z B. In
particular, Φ factorizes through the canonical mapping

R ⊗Q L
′ −→ R ⊗Q L.

It follows that L′ is a CM-field and, since X(B,Φ) is simple, we have
L′ = L. Therefore, τ = σ.

As a consequence M is a Galois B-module and XR(M,Φ) ∼= X.
This finishes the proof. �

Clearly, the construction of XR(M,Φ) is canonical in M . Therefore,
XR(·,Φ) is a functor from the category of Galois B-modules into the
category of abelian varieties over R admitting sufficiently many complex
multiplications.

Proposition 116. Let L be a CM-field and B an order in L. If Φ is
a C-algebra structure on R ⊗Z B such that X(B,Φ) is simple then the
functor XR(·,Φ) is an equivalence onto a full subcategory of the category
of abelian varieties over R with sufficiently many complex multiplica-
tions, that is, the mapping

XR(·,Φ): HomB,G(M,N) −→ Hom(XR(M,Φ), XR(N,Φ))

is a bijection, for any Galois B-modules M and N that are finitely
generated and B-torsion free.

Proof. This follows immediately from Proposition 112. �

As a last topic in this section, let us study the Weil restriction of an
abelian variety over C with sufficiently many complex multiplications.
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In virtue of Proposition 107, it suffices to study abelian varieties over
C of the form X(M,Φ), where M is a B-module and Φ is a C-algebra
structure on R ⊗Z B, for some order B in L.

Observe that if M is a B-module then M ⊕M σ can be made into
a Galois B-module in the following way. Define the action of σ on
M ⊕Mσ by

σ · (m,m′) = (m′,m),

for every m ∈ M and m′ ∈ Mσ. Here Mσ is again the conjugate
B-module structure on M with respect to σ. Clearly, this Galois B-
module depends in a functorial way onM . Hence, we get a functor from
the category of B-modules into the category of Galois B-modules.

Proposition 117. Let L be a CM-field and B an order in L. If Φ is
a C-algebra structure on R ⊗Z B and M is a finitely generated torsion
free B-module then

N(X(M,Φ)) ∼= XR(M ⊕Mσ,Φ),

canonically. In particular, the Weil restriction of an abelian variety
over C with sufficiently many complex multiplications is an abelian va-
riety over R admitting sufficiently many complex multiplications.

Proof. If Φ is a C-algebra structure on R⊗ZB and M is a finitely gen-
erated torsion free B-module then the complex vector space structure
on

(R ⊗Z B) ⊗B M
σ

is canonically isomorphic to the conjugate complex vector space struc-
ture on

(R ⊗Z B) ⊗B M.

Therefore, the first statement follows from Proposition 95. The last
statement follows from the first and Proposition 107. �

3.2 Galois B-modules

In this section K will be a number field and A ⊆ K a Dedekind ring
having quotient field K. Furthermore, L/K will be a finite Galois
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extension with Galois group G and B ⊆ L will be the integral closure
of A in L. In particular, it follows that B is finitely generated as an
A-module and B is a Dedekind ring [18, p. 6].

If p is a nonzero prime ideal of A then

pB =
∏

P|p
PeP,

where the product is taken over the set of all prime ideals P of B which
lie over p. If moreover

fP = [B/P : A/p],

then it is known [18, p. 24] that

∑

P|p
ePfP = n,

where n is the degree of the extension L/K. Since the Galois group G
acts transitively on the set of primes of B which lie over p [18, p. 12],
the integers eP and fP depend only on p. Henceforth, we will denote
these integers by ep and fp, respectively. In particular, for every nonzero
prime p of A,

epfpgp = n, (3.1)

where gp is the number of primes of B which lie over p. The nonzero
prime p of A is called ramified in B if

ep 6= 1.

Otherwise, the prime p of A is called unramified in B.

Example 118. Since we will be primary interested in the case that the
degree of the extension L/K is 2, let us see in this case what it means
for a nonzero prime p of A to be ramified in B. It follows immediately
from formula (3.1) that p is ramified in B if and only if pB is not a
prime ideal of B and there exists exactly one prime ideal of B which
lies over p. �
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Let us recall the definition of the discriminant dB/A of B over A [30,
p. 50]. If

T :L× L −→ K

is the trace form with respect to L/K, i.e. T (x, y) = TrL/K(xy), then
there is a canonical mapping

∧
T :V ⊗K V −→ K,

where V is the n-fold exterior power of L as a K-module and n is the
degree of the extension L/K. The image in V of the n-fold exterior
power of B as an A-module, is a finitely generated A-module M . The
discriminant dB/A of B over A is by definition the image of M under∧
T . In particular, the discriminant of B over A is a nonzero ideal of A.

If B is a free A-module then, the discriminant of B over A is principal
and generated by

det(TrL/K(xixj)),

where {x1, . . . , xn} is a basis for B, which is equal to

det(σ(xi))
2,

where σ runs through the Galois group G.
It is well known [30, p. 53] that a nonzero prime ideal p of A is

ramified in B if and only if p divides the discriminant dB/A of B over
A.

Example 119. If K = Q and L = Q (
√
d), for some nonzero square-

free integer d, then the ring of integers O in L is Z[ω], where

ω =

{ √
d, if d 6≡ 1 mod 4,

1
2 + 1

2

√
d, if d ≡ 1 mod 4.

Taking A = Z and B = O, the discriminant dB/A of B over A is the
ideal of A generated by 4d, if d 6≡ 1 mod 4, and by d, if d ≡ 1 mod 4. �

Recall that [30, p. 16], if A is a Dedekind ring and M is an A-module
of finite length, χA(M) is the unique ideal of A characterized by the
following conditions.
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(i) χA(A/p) = p, for every nonzero prime p of A.
(ii) χA is additive, i.e.

χA(M) = χA(M ′)χA(M ′′),

whenever 0 → M ′ → M → M ′′ → 0 is an exact sequence of
A-modules of finite length.

If M is a B-module of finite length then M is of finite length as an
A-module and, as such, χA(M) is an ideal of A.

If M is a B-module and, moreover, G acts on M then we call M ,
as in Section 3.1, a Galois B-module if

σ · (bm) = σ(b)σm,

for every m ∈ M , b ∈ B and σ ∈ G, which makes sense since B is
stable under the action of G. With the evident definition of morphisms
of Galois B-modules, the category of Galois B-modules turns out to be
equivalent with the category of B(G)-modules, where the ring B(G) is
the smallest subring of the ring EndA(B) of A-linear endomorphisms
of B, containing B as well as G. Since the subset G of EndA(B) is
linearly independent over B [33, p. 90], it follows that the ring B(G)
is a free B-module generated by the elements of G. Then, if M is a
Galois B-module, M is made into a B(G)-module by defining

(∑

σ∈G

bσσ

)
m =

∑

σ∈G

bσ(σm),

where m ∈ M , bσ ∈ B and σ ∈ G. Clearly, this establishes an equiva-
lence from the category of Galois B-modules into the category of B(G)-
modules. Henceforth, we will use the notions “Galois B-module” and
“B(G)-module” interchangeably.

If M is a B(G)-module and N an A-module then the tensor product

M ⊗A N

of M and N as A-modules has the structure of a B(G)-module, since
M is a B(G)-module. The special case M = B will be important to us.

If M and N are B(G)-modules then the tensor product

M ⊗B N
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of M and N as B-modules has an action of G which turns it into a
Galois B-module. This G-action is determined by

σ ·m⊗ n = (σm) ⊗ (σn).

for any m ∈ M , n ∈ N and σ ∈ G. Moreover, HomB(M,N), that
is, the B-module of all B-linear mappings from M into N , is a Galois
B-module if we define

(σ · f)(m) = σf(σ−1m),

for any m ∈M , f ∈ HomB(M,N) and σ ∈ G.
If M is a B(G)-module then G acts on M and MG is an A-module.

Since B is a B(G)-module, B⊗AM
G is a B(G)-module and the canon-

ical mapping
B ⊗A (MG) −→M

is B(G)-linear. This mapping will be denoted by ι.

Lemma 120. If M is a finitely generated B(G)-module, projective as
a B-module then the canonical mapping

ι:B ⊗A (MG) −→M

is injective. Moreover, the cokernel of ι has finite length as a B-module.

Proof. Let V be the L-vector space

L⊗B M.

Since M is B-torsion free, we can consider M as a B-submodule of V .
Moreover, since both L and M are B(G)-modules, V is a B(G)-module
and M is a B(G)-submodule of V .

Since V is finite-dimensional and [30, p. 151]

H1(G,GLm(L)) = 0,

where m is the dimension of V , the L-vector space V is G-equivariantly
isomorphic to Lm. In particular, identifying V with Lm, the A-module
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MG is contained in Km. Since B is projective as an A-module, the
canonical mapping

B ⊗A M
G −→ Lm

is injective and has as image BMG which is contained in M . Therefore,
ι is injective. Moreover, since KMG = Km, we have

LMG = Lm.

Hence, the cokernel of ι is a finitely generated B-torsion module. This
implies that the cokernel of ι is of finite length as a B-module. �

Given a B(G)-module M , the cokernel of ι will be denoted by

EB/A(M)

and will be called the ramification module of M . When there is no
confusion possible we write just E(M) for the ramification module of
M . The ramification module of B(G) will be denoted by E.

Remark 121. Observe that the ramification module of a finitely gen-
erated B(G)-module M which is B-projective contains only local infor-
mation. That is, if p is a nonzero prime ideal of A then

EBp/Ap
(Mp) ∼= EB/A(M)

p
,

where Ap is the localization of A in p and, for any A-module M ,

Mp = M ⊗A Ap.

Moreover,

EB/A(M) ∼=
⊕

p∈Spec A

EB/A(M)
p
,

since EB/A(M) is of finite length. �

Example 122. If the degree of the extension L/K is 2 and p is a
nonzero prime of A which is ramified in B then the unique prime ideal
P of B lying above p (Example 118) is stable under the action of G.
Hence, P is a B(G)-submodule of B and

PG = p.
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Therefore,
E(P) ∼=B B/P.

If p is a nonzero prime of A which is split in B then pB = P1P2, where
P1 and P2 are prime ideals of B. Since the Galois group of L/K acts
transitively on {P1,P2} [30, p. 20], neither P1 nor P2 are a B(G)-
submodule of B. If p is inert then P = pB is a prime ideal of B and
hence P is G-stable. Clearly,

E(P) = 0.

If b ⊆ L is a fractional ideal of B and G-stable then we can compute
E(b) using the computations above. Let

b =
∏

P

PordPb

be the unique prime factorization of b [30, p. 12]. Then, since b is
G-stable

ordσPb = ordPb,

for every automorphism σ of L/K. Therefore,

b = a
∏

P|dB/A

PordPb,

for some fractional ideal a of A. Hence, by Remark 121

E(b) ∼=B

⊕

P|dB/A

(B/P)εP,

where εP is 0 or 1 according to ordPb being even or odd (resp.). �

By Lemma 120, we have a short exact sequence

0 −→ B ⊗A M
G ι−→M −→ E(M) −→ 0,

whenever M is a finitely generated B(G)-module which is B-projective.
Clearly, this sequence depends in a functorial way on M . That is, if
M and N are finitely generated B(G)-modules which are B-projective
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then, for every B(G)-linear mapping f :M → N , we have a commuta-
tive diagram

0 −→ B ⊗A M
G −→ M −→ E(M) −→ 0

↓ ↓ ↓
0 −→ B ⊗A N

G −→ N −→ E(N) −→ 0.

In particular, if M and N are isomorphic then MG and NG are iso-
morphic as A-modules and E(M) and E(N) are isomorphic as B(G)-
modules. In the case that the extension degree is 2 we will prove the
converse below, under certain conditions. First we have to study ram-
ification modules more thoroughly.

Define the element of B(G)

tr =
∑

σ∈G

σ.

Lemma 123. If the degree of the extension L/K is n then

χA(E)2 = (dB/A)n.

In particular, the support of E as a B-module is equal to the set of
primes of B which are lying over ramified primes of A.

Proof. By Remark 121 we may assume that B is a free A-module.
Clearly, the set G is a B-basis for B(G). If {b1, . . . , bn} is an A-basis
for B then

{tr b1, . . . , tr bn}
is a B-basis for B ⊗A B(G)G, since

B(G)G = {tr b | b ∈ B}.

Hence, the ramification module of B(G) is, as a B-module, isomorphic
to the cokernel of the B-linear mapping F :B(G) → B(G) given by
the matrix (σ(bi)) with respect to the basis G for B(G). Since A is
Dedekind, χA(E) is generated by the determinant of F as an A-linear
mapping [30, p. 48]. However, this determinant is equal to

NL/K(detF ),
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where NL/K is the norm with respect to the field extension L/K. Since
(detF )2 = dB/A, it follows that

χA(E)2 = (dB/A)n.

This proves the lemma. �

Corollary 124. If M is a B(G)-module then the support of E(M) as a
B-module is contained in the set of primes of B which are lying above
ramified primes of A. In particular, the support of E(M) is finite.

Proof. There exists a surjective B(G)-linear mapping

F −→M,

where F is a free B(G)-module. Then, the induced mapping

E(F ) −→ E(M)

is surjective. As E(F ) is the direct sum of E, the statement follows
from Lemma 123. �

If M is a finitely generated B(G)-module which is projective as a B-
module then B⊗AM

G is the biggest B(G)-submodule of M with trivial
ramification module. We can also construct a smallest B(G)-module N
containing M such that the ramification module of N is trivial. This
construction goes as follows.

Let M be a finitely generated B(G)-module which is B-projective
and let us denote the ring of A-linear endomorphisms of B by C, i.e.

C = EndA(B).

Since M is B-torsion free, we may consider M as a B(G)-submodule
of V = L⊗B M . Since

L⊗B C = L⊗B B(G),

there is a unique structure of a C-module on V extending the B(G)-
module-structure. In particular, CM is a B(G)-module containing M .
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Lemma 125. The module CM is the smallest B(G)-submodule N of
V containing M such that

E(N) = 0.

Proof. Since H1(G,GLm(L)) = 0, we may assume that V = Lm. Ob-
serve that, if N ⊆ V is a B(G)-module containing M such that the
ramification module of N is trivial, then

CM ⊆ N.

This will follow from the fact that CN ⊆ N . To prove this, it suffices
to show that CNG ⊆ N , since BNG = N . If x ∈ NG and c ∈ C then
there exists xi ∈ K such that

x = (x1, . . . , xm).

Then

cx = (cx1, . . . , cxm)

= (c(x1 · 1), . . . , c(xn · 1))

= (x1 · c(1), . . . , xn · c(1))

= c(1)x.

Therefore, cx ∈ N . This proves that CM ⊆ N .
On the other hand, N = CM itself has a trivial ramification module.

This follows from the fact that

CGN = NG and BCG = C.

Indeed, the first statement is a direct consequence of the existence of
an element c of C such that c(1) = 1, while the second statement is
trivial. �

Remark 126. In general it is not true that CM is isomorphic as a
C-module to

C ⊗B(G) M.

The latter may have B-torsion, while CM is B-torsion free. �
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Since C/B(G) is of finite length as a B-module, the B(G)-module

FB/A(M) = CM/M

is of finite length as a B-module, whenever M is a finitely generated
B(G)-module which is B-projective. When no confusion is likely to
occur we denote this B(G)-module by F(M). We will call this B(G)-
module the dual ramification module of M . If M = B(G) then we
define

F = F(M).

Clearly, one has a short exact sequence

0 −→ E(M) −→ CM/B ⊗A M
G −→ F(M) −→ 0 (3.2)

of B(G)-modules which are of finite length as B-modules.
If M is a B(G)-module, let us denote the B(G)-module

HomB(M,B)

by M?. If M is a B(G)-module which is projective as a B-module then

(M?)? ∼= M,

canonically. Moreover, if N is a B(G)-submodule of M such that M/N
is of finite length as a B-module then N ? is a B(G)-submodule of
L⊗B M

? containing M ?.

Lemma 127. If M is a B(G)-module which is projective as a B-module
then

(B ⊗A M
G)? = C(M?) and (CM)? = B ⊗A (M?)G.

Moreover, E(M) and F(M) are isomorphic as B-modules.

Proof. Observe that, if N is a B(G)-module, finitely generated and
B-projective, which has trivial ramification module, the B(G)-module
N? has trivial ramification module. Hence, since (N ?)? and N are
canonically isomorphic as B(G)-modules, whenever N is B-projective,
the assignment

N 7−→ N?
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is a bijection from the set of B(G)-submodules of M having trivial
ramification module onto the set of B(G)-submodules of L ⊗B (M?)
containing M and having trivial ramification module. In particular,
since B ⊗A MG is the biggest B(G)-submodule of M having trivial
ramification module and, by Lemma 125, CM is the smallest B(G)-
module containing M with trivial ramification module,

(B ⊗A M
G)? = C(M?) and (CM)? = B ⊗A (M?)G.

To prove the last assertion, recall that we have an exact sequence

0 −→ B ⊗A M
G −→M −→ E(M) −→ 0.

Since M is projective as a B-module we have an exact sequence of
B-modules

0 −→M? −→ (B ⊗A M
G)? −→ Ext1

B(E(M), B) −→ 0,

by definition of Ext1
B (cf. [9, p. 107]). Hence, by what we have seen

above,
Ext1

B(E(M), B) ∼= F(M)

as B-modules. Since E(M) is of finite length as a B-module, one easily
verifies that

Ext1
B(E(M), B) ∼= E(M),

as B-modules. This finishes the proof of the lemma. �

Let us turn our attention to the case that the extension degree of
L/K is 2.

Lemma 128. Suppose L/K is an extension of degree 2. If M is a
B(G)-module then the nontrivial element σ of G acts on the ramifica-
tion module E(M) of M as multiplication by −1. Moreover, if M is
B-projective then the canonical mapping

µM : (CM)G/MG −→ F(M)

is an isomorphism of A-modules. In particular, the nontrivial element σ
of G acts on the dual ramification module F(M) of M as multiplication
by 1.



114 10CHAPTER 3. REAL ABELIAN VARIETIES WITH CM

Proof. Reasoning as in the proof of Corollary 124, we may assume
M = B(G) for the first part of the lemma. Let ϕ be the B-linear
mapping from B(G) into B defined by

ϕ(b+ b′σ) = b− b′.

Then, if we define a G-action on B by

σ · b = −σ(b)

and if we denote the resulting B(G)-module by B ′, the mapping ϕ is
in fact B(G)-linear. Thus

E ∼= B′/b,

where b is the ideal of the ring B ′ generated by

{b− σ(b) | b ∈ B}.

Clearly, σ acts as multiplication by −1 on B ′/b. This proves the first
part of the lemma.

To prove the second part, observe that the canonical mapping µM

is injective by definition of F(M). Let N be the A-module

(CM)G/MG.

Then, by the exact sequence (3.2) and Lemma 127,

χB(F(M))2 = χB(B ⊗A N) = χA(N)B.

Hence,
χA(F(M)) = χA(N).

Therefore, the mapping µM is an isomorphism of A-modules. �

As a consequence of Lemma 128, the A-module

(CM)G/MG

has a canonical structure of a B-module, if M is a B-projective B(G)-
module. Moreover if N is also a B-projective B(G)-module and

ϕ:M −→ N
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is an isomorphism then the A-linear mapping

(Cϕ)G: (CM)G −→ (CN)G

induces a B-linear isomorphism from (CM)G/MG onto (CN)G/NG.
The converse is proven in the following lemma.

Lemma 129. Suppose the degree of the extension L/K is 2. Let M
and N be finitely generated B-projective B(G)-modules. If there exists
an A-linear isomorphism ψ from (CM)G onto (CN)G such that ψ maps
MG into NG and the induced mapping

ψ: (CM)G/MG −→ (CN)G/NG

is a B-linear isomorphism then there exists a B(G)-linear isomorphism

ϕ:M −→ N

such that (Cϕ)G = ψ.

Proof. It suffices to prove that, given an A-linear mapping ψ from
(CM)G into (CN)G such that ψ maps MG into NG and the induced
mapping

ψ: (CM)G/MG −→ (CN)G/NG

is B-linear, there exists a unique B(G)-linear mapping ϕ from M into
N such that

(Cϕ)G = ψ.

By assumption, the diagram

CM/B ⊗A M
G

CN/B ⊗A N
G

F(M)

F(N)
?
B ⊗ ψ

?
F(ψ)

-

-

commutes, where we have identified CM/B ⊗A M
G with

B ⊗A ((CM)G/MG)
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for every B-projective B(G)-module M . Consequently, B⊗ψ maps the
ramification module ofM , considered as a submodule of CM/B⊗AM

G,
into the ramification module of N . Hence, B ⊗ ψ, considered as a
B(G)-linear mapping from L ⊗A M into L ⊗A N maps M into N .
The restriction ϕ of B ⊗ ψ to M is therefore the desired B(G)-linear
mapping. Since uniqueness of ϕ is trivial, the proof is finished. �

We are now ready to prove our first classification theorem. Using
notation introduced earlier in this section, we have the following.

Theorem 130. Suppose the degree of the extension L/K is 2. Let M
and N be finitely generated B-projective B(G)-modules such that both
ramification modules E(M) and E(N) are semi-simple as B-modules.
Then

M ∼=B(G) N ⇐⇒
(
MG ∼=A N

G and E(M) ∼=B E(N)
)
.

Proof. It suffices to prove that M and N are isomorphic, whenever MG

and NG are isomorphic and E(M) and E(N) are isomorphic.
If M is a finitely generated B-projective B(G)-module then, by

Lemma 128
µM : (CM)G/MG −→ F(M),

is an A-linear isomorphism. Moreover, by Lemma 127, F(M) and E(M)
are isomorphic as B-modules. Therefore, (CM)G/MG is semi-simple
and, by Corollary 124, its support consists of primes of B which are
lying over ramified primes of A. In particular, the radical ideal

b = r (dB/AB)

of dB/AB is contained in the annihilator of the B-module (CM)G/MG.

Hence, (CM)G/MG is a B/b-module. Since the canonical mapping

A −→ B/b

is surjective, it follows that every A-linear mapping

ψ: (CM)G/MG −→ (CN)G/NG
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is B-linear, whenever M and N are finitely generated B-projective
B(G)-modules with E(M) and E(N) are B-semi-simple.

Now we are ready to prove the theorem. Let M and N be finitely
generated B-projective B(G)-modules such that MG and NG are iso-
morphic and E(M) and E(N) are isomorphic. In particular,

(CM)G/MG ∼= (CN)G/NG,

as A-modules. Hence, it follows from well known properties of projec-
tive modules over Dedekind rings (see [8, Proposition 16, p. 531] and
[8, Proposition 24, p. 544]) that (CM)G and (CN)G are isomorphic.
Then, by Lemma 132 below, there exists an isomorphism

ψ: (CM)G −→ (CN)G

which maps MG onto NG. We have seen above that the induced map-
ping ψ is B-linear. Hence, M and N are isomorphic as B(G)-modules
by Lemma 129. �

Remark 131. If [L : K] = 2 and B is tamely ramified over A, that is,

ordpdB/A ≤ 1,

for every nonzero prime p of A, then every B-projective B(G)-module
M has a B-semi-simple ramification module E(M). For, let

F −→M

be a surjectiveB(G)-linear mapping, with F a free B(G)-module. Then

E(F ) −→ E(M)

is surjective. Since E(F ) is isomorphic to the direct sum of a number
of copies of E, the B-module E(F ) and hence the B-module E(M) is
semi-simple by Lemma 123.

If B is not tamely ramified over A then E itself is not semi-simple
as a B-module. One can check that

E ∼=B B/DB/A,

where DB/A is the different of B/A [30, p. 50]. �
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Lemma 132. Let A be a Dedekind ring and M and N isomorphic
finitely generated projective A-modules. Suppose M ′ ⊆M and N ′ ⊆ N
are submodules such that M/M ′ and N/N ′ are isomorphic A-modules
of finite length. Then there exists an isomorphism ψ from M into N
such that

ψ(M ′) = N ′.

Proof. Of course, we may assume N = M . Let a ⊆ A be a nonzero
ideal such that

aM ⊆M ′ and aM ⊆ N ′.

Since M/M ′ and M/N ′ are isomorphic, there exists an A/a-linear au-
tomorphism ψ of M/aM such that

ψ(M ′/aM) ⊆ N ′/aM.

Moreover, M/aM is a free A/a-module and we may assume that the
determinant of ψ is equal to 1. By Lemma 133, there exists an A-linear
automorphism ψ of M which induces ψ. Clearly, ψ maps M ′ onto
N ′. �

Let us introduce the following notation. If A is a ring and M is a
finitely generated projective A-module then

SL(M) = {ψ ∈ EndA(M) | detψ = 1}.
Furthermore, for a prime ideal p of A, let us denote the completion of

the local ring Ap by Âp. The topological ring
∏

p6=0

Âp

is denoted by A0. If A is a Dedekind ring and K its function field then

K̂p will denote the completion of K at p and the subring of
∏

p6=0

K̂p

consisting of (xp) such that

xp ∈ Âp
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except for a finite number of prime ideals p will be denoted by A. This
ring turns into a topological ring by taking as a fundamental system
of neighbourhoods of 0 in A the system of neighbourhoods of 0 in A0.
The topological ring A is called the ring of restricted adèles [8, p. 497].

Lemma 133. If M is a finitely generated projective module over the
Dedekind ring A and a is a nonzero ideal of A then the canonical map-
ping

SL(M) −→ SL(M/aM)

is surjective.

Proof. Suppose ψ is an element of SL(M/aM). Since Âp is a discrete
valuation ring,

M̂p = M ⊗A Âp

is a free Âp-module of finite rank. Hence, there exists, for any nonzero
prime ideal p of A

ψp ∈ SL(M̂p)

such that the mapping

M̂p/aÂpM̂p −→ M̂p/aÂpM̂p

induced by ψp is equal to ψ⊗Âp, when we identify (M/aM)⊗A Âp with

M̂p/aÂpM̂p.
We have the following commutative diagram

SL(M)

SL(M ⊗A A0)

SL(M ⊗A K)

SL(M ⊗A A)
? ?

-

-

where all arrows are injective and, moreover,

SL(M) = SL(M ⊗A A0) ∩ SL(M ⊗A K).

Since SL(M ⊗A K) is dense in SL(M ⊗A A) (cf. [8, Proposition 4,
p. 498]) and SL(M ⊗A A0) is an open subgroup of SL(M ⊗A A), the
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group SL(M) is dense in SL(M ⊗A A0). Therefore, there exists an
element ψ of SL(M) such that

ψ ⊗A Âp ≡ ψp mod (pÂp)
np,

for every nonzero prime ideal p of A, where np is the unique integer
such that

a =
∏

p6=0

pnp.

Hence, the mapping from M/a into itself induced by ψ is equal to ψ.
This proves surjectivity. �

Our second classification theorem, which we are now going to state
and prove, is a corollary of Theorem 130.

Theorem 134. Suppose the degree of the extension L/K is 2. If B
is tamely ramified over A then, for all finitely generated projective B-
modules M and N ,

B(G) ⊗B M ∼=B(G) B(G) ⊗B N ⇐⇒ M ∼=A N.

Proof. By Remark 131, every ramification module with respect to B/A
is semi-simple as a B-module.

Since the ramification module can be computed locally (cf. Re-
mark 121) and since a projective module is locally free, we see that, for
any finitely generated projective B-modules M and N ,

E(B(G) ⊗B M) ∼=B E(B(G) ⊗B N)

if and only if M and N have the same rank over B. Moreover,

(B(G) ⊗B M)G ∼=A M.

Therefore, the theorem follows from Theorem 130. �
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3.3 Real abelian varieties with complex
multiplication

Definition 135. A real abelian variety X is said to admit sufficiently
many complex multiplications if the complexification C(X) of X admits
sufficiently many complex multiplications. If the dimension of X is 1
then this is abbreviated to “X admits complex multiplication”.

If X is an abelian variety over C with sufficiently many complex
multiplications then the underlying real algebraic structure RX of X is
a real abelian variety admitting sufficiently many complex multiplica-
tions, by Proposition 117.

The following theorem is a partial generalization of Theorem 98.

Theorem 136. Let L be a CM-field and B ⊆ L the ring of integers,
such that B is tamely ramified over A, where A = B ∩K and K is the
maximal totally real subfield of L. Let M and N be finitely generated
projective B-modules and let Φ be a C-algebra structure on R⊗ZB such
that X(B,Φ) is simple. Let

X = X(M,Φ) and Y = X(N,Φ)

be the associated abelian varieties over C. Then,

RX
∼= RY ⇐⇒ M ∼=A N.

Proof. From Proposition 117 it follows that

N(X) ∼= XR(B(G) ⊗B M,Φ).

Therefore, the conclusion follows from Proposition 116 and Theorem 134. �

Observe that, by Corollary 82, the result still holds if we read “RX
∼=

RY as real algebraic varieties” instead of “RX
∼= RY ”.

As a consequence of Theorem 136 we are able determine the number
ρ(RX) of (isomorphism classes of) algebraic varieties Y over C such that

RY
∼= RX,
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where X is the abelian variety X(M,Φ) associated to the finitely gen-
erated projective B-module M under the conditions of Theorem 136.

For this, let
η: ClB −→ ClA

be induced by the norm mapping NL/K which assigns to any fractional
ideal b of B the fractional

NL/K(b) = bσ(b).

Then η is a morphism from the class group of B into the class group
of A. Since the class number h(B), i.e. h(B) = #ClB, is finite [18,
Chapter V], the kernel ker η of η is finite.

Theorem 137. The number of (isomorphism classes of) algebraic va-
rieties Y over C such that RY

∼= RX is equal to the order of ker η,
i.e.

ρ(RX) = # ker η.

In particular, ρ(RX) is finite.

For the proof we will need the following lemma.

Lemma 138. Let X be an abelian variety over C. If Y is an algebraic
variety over C such that

RY
∼= RX

then Y is isomorphic to an abelian variety over C.

Proof. It is clear that Y is a nonsingular irreducible complete algebraic
variety over C. Let

g:Y −−→ A

be its Albanese variety [17, p. 41]. Then

N(g):N(Y ) −−→ N(A)

is the Albanese variety of the algebraic variety N(Y ) over R. Actually,
by Theorem 42, both g and N(g) are morphisms.
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Since the underlying real algebraic structure RY of Y is isomorphic
to the underlying real algebraic structure RX of X, there exists, by
Theorem 42 a birational morphism

f :N(Y ) −→ N(X),

with the property that R(f) is an isomorphism from R(N(Y )) onto
R(N(X)). Since f is birational and N(X) is an abelian variety over R,
this is also an Albanese variety of N(Y ). Hence there exists, changing f
by a translation if necessary, an isomorphism h from N(A) onto N(X)
such that

N(Y ) N(A)

N(X)
?
h

-N(g)

HHHHHHHHj

f

commutes. It follows that

g:Y −→ A

is a birational morphism with the property that Rg is an isomorphism
of real algebraic varieties. Obviously, this implies that g is an isomor-
phism. This proves the lemma. �

Proof of Theorem 137. Suppose Y is an algebraic variety over C such
that the underlying real algebraic structure RY of Y is isomorphic to

RX. By Lemma 138, we may assume that Y is an abelian variety over
C. It follows that N(Y ) and N(X) are isomorphic as abelian variety
over R. In particular,

Center(End(Y × Y )) ∼= Center(End(X ×X)) = B.

Therefore, there exists a finitely generated projective B-module N such
that

X(N,Φ) ∼= Y.

Hence, by Theorem 136, N is isomorphic to M as an A-module.
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Conversely, every finitely generated projective B-module N which
is isomorphic to M as an A-module gives rise to an abelian variety
Y = X(N,Φ) such that

RY
∼= RX,

by Theorem 136.
It follows from Proposition 116 that the number ρ(RX) of (isomor-

phism classes of) algebraic varieties Y over C such that RY is isomorphic
to RX is equal to the number of (B-isomorphism classes of) projective
B-modules N such that N is isomorphic as an A-module to M . The
latter number is equal to # ker η (this follows from [8, Proposition 24,
p. 544]). This finishes the proof of the theorem. �

Example 139. Let K be a totally real field such that h(A) = 1, where
A the ring of integers of K. Let L be a totally imaginary degree 2
extension of K such that B is tamely ramified over A, where B is the
ring of integers of L. Let Φ be a C-algebra structure on R ⊗Z B such
that X = X(B,Φ) is simple. Then

ρ(RX) = h(B).

In the special case K = Q, this was proved in [14, Corollary 1.4]. �

We also have a partial generalization of Corollary 100.

Theorem 140. Let X be a simple abelian variety over C with suffi-
ciently many complex multiplications such that its ring B of endomor-
phisms is the ring of integers of the field L = EndoX. Let A = B ∩K,
where K is the maximal totally real subfield of L. Then the underlying
real algebraic structure RX of X is isomorphic to the product X1 ×X2

of two real algebraic varieties X1 and X2 of positive dimension if and
only if the ring B is tamely ramified over A. Moreover, in that case the
number of (isomorphism classes of) ordered pairs (X1, X2) such that
X1 ×X2 is isomorphic to RX is equal to

2gh(A),

where g is the number of nonzero prime ideals of A dividing the dis-
criminant dB/A of B over A.
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Proof. By Proposition 107, there exist a C-algebra structure Φ on R⊗Z

B and a B-module M such that

X(M,Φ) ∼= X.

In particular, M is B-projective of rank 1.
Suppose B is tamely ramified over A. Then, by Lemma 123, the

B-module E is semi-simple and

E ∼=B

g⊕

i=1

B/Pi,

where P1, . . . ,Pg are the nonzero prime ideals of B dividing dB/A.
Choose εi = 0, 1, for i = 1, . . . , g, and choose a fractional ideal a of A.
Let

M1 = a

g∏

i=1

Pεi

i and M2 = a′
g∏

i=1

P1−εi

i ,

where a′ is a fractional ideal of A such that

aa′dB/A
∼=A ∧2

AM.

Observe that we get in this way 2gh(A) different (isomorphism classes
of) ordered pairs (M1,M2) of B(G)-modules. Then M1 and M2 are
B(G)-submodules of L and, by Example 122,

E(M1) ∼=B

g⊕

i=1

B/Pεi

i and E(M2) ∼=B

g⊕

i=1

B/P1−εi

i .

Hence,

E(M1 ⊕M2) ∼=B E(M) and (M1 ⊕M2)
G ∼=A M ∼=A (B(G)⊗B M)G.

Therefore, by Theorem 130,

M1 ⊕M2
∼=B(G) M.

This implies, with use of Proposition 116,

X1 ×X2
∼= RX,
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where Xi is the real abelian variety R(XR(Mi,Φ)), for i = 1, 2.
Conversely, suppose RX is isomorphic to the product X1 × X2 of

two real algebraic varieties X1 and X2. One proves in much the same
way as Lemma 138 that both X1 and X2 are isomorphic to real abelian
varieties. Hence we may assume that X1 and X2 are real abelian sub-
varieties of RX. Clearly, there exists B-projective B(G)-modules M1

and M2, both of rank 1 as B-modules, such that

XR(M1 ⊕M2,Φ) ∼= N(X) and R(XR(Mi,Φ)) ∼= Xi, for i = 1, 2.

Hence, M1 ⊕M2 and B(G)⊗B M are isomorphic B(G)-modules. Since
bothM1 andM2 are of rank 1 as B-modules, their ramification modules
are semi-simple by Example 122. Therefore, the ramification module of
B(G)⊗BM is B-semi-simple and so is E. This proves that B is tamely
ramified over A. Moreover, by Theorem 130 and Example 122, there
exist εi = 0, 1, for i = 1, . . . , g, and a fractional ideal a of A such that

M1
∼=B(G) a

g∏

i=1

Pεi

i .

Then necessarily

M2
∼=B(G) a′

g∏

i=1

P1−εi

i ,

where a′ is a fractional ideal of A such that

aa′dB/A
∼=A ∧2

AM.

This proves the theorem. �

Example 141. Let K be a totally real field such that h(A) = 1, where
A the ring of integers of K. Let L be a totally imaginary degree 2
extension of K such that B is tamely ramified over A, where B is the
ring of integers of L. Let Φ be a C-algebra structure on R ⊗Z B such
that X = X(B,Φ) is simple. Then the number of (isomorphism classes
of) ordered pairs (X1, X2) such that X1 × X2 is isomorphic to RX is
equal to

2g,
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where g is the number of nonzero prime ideals of A dividing the dis-
criminant dB/A of B over A. In the special case K = Q, this has been
proved in [5]. �

Remark 142. It has been proved in [5, Theorem 1.3] that for any
elliptic curve E over C there does not exist a real algebraic variety C
such that

C2 ∼= RE.

Simple abelian varieties over C of dimension greater than 1 do not have
this property, as is shown by the following example.

Let K be a totally real field such that h(A) = 1, where A is the ring
of integers of K. Suppose L is a totally imaginary degree 2 extension
of K such that B/A is unramified, where B is the ring of integers of
L. (Such a situation exists, take K = Q(

√
3) and L = K(

√
−1).) In

particular, dB/A = A. Let

X = X(B,Φ),

for some C-algebra structure Φ on R ⊗Z B such that X is simple.
Then, according to Theorem 140, there is (up to isomorphism) a unique
ordered pair (X1, X2) of real algebraic varieties such that

X1 ×X2
∼= RX.

Since X2×X1 is also isomorphic to RX , it follows thatX1
∼= X2. Hence,

there exists a real algebraic variety Y such that

Y 2 ∼= RX

as real algebraic varieties. �
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Samenvatting

In dit proefschrift bestuderen we reële abelse variëteiten, waarbij de
nadruk ligt op die reële abelse variëteiten die voldoende veel complexe
vermenigvuldigingen toelaten. In het bijzonder zijn we gëınteresseerd
in

(i) realiseerbaarheid van Z/2Z-homologieklassen van reële abelse var-
iëteiten door reële algebräısche deelvariëteiten,

(ii) klassificatie van de onderliggende reële algebräısche structuur van
abelse variëteiten over C die voldoende veel complexe vermenigvuldigin-
gen hebben, en

(iii) de produktstructuur van simpele abelse variëteiten over C die
voldoende veel complexe vermenigvuldigingen hebben.

We bestuderen (i) in Hoofdstuk 2. Daar wordt, voor een willekeurige

reële abelse variëteit V , de groepHalg
d−1(V,Z/2Z) van codimensie-1 Z/2Z-

homologieklassen die realiseerbaar zijn door reële algebräısche deelvar-
iëteiten bepaald. In het bijzonder bewijzen we in Hoofdstuk 2 dat,
zodra V niet samenhangend is met betrekking tot de sterke topologie
en de dimensie d van V groter dan 1 is,

(0) 6= Halg
d−1(V,Z/2Z) 6= Hd−1(V,Z/2Z).

In Hoofdstuk 3 bestuderen we (ii) en (iii). We generaliseren in
dat hoofdstuk resultaten uit [5] en [14], waar het 1-dimensionale geval
bestudeerd is. Zo is in [14] het volgende bewezen. Laat E een ellip-
tische kromme over C zijn met complexe vermenigvuldiging, dat wil
zeggen, de ring End(E) van endomorfismen van E is ongelijk aan Z.
Zij T de onderliggende reële algebräısche structuur van E. (In het bi-
jzonder geldt dan dat T een reële algebräısche torus is.) Dan is het
aantal (isomorfieklassen van) algebräısche variëteiten X over C zodat
de onderliggende reële algebräısche structuur van X isomorf is met T ,
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gelijk aan het klassegetal van de ring End(E). Stelling 137, die we in
Paragraaf 3.3 bewijzen, is hier een generalisatie van.

In [5] is bewezen dat de onderliggende reële algebräısche struc-
tuur van een elliptische kromme E over C isomorf is met het produkt
van 2 reële algebräısche krommen als en slechts als E complexe ver-
menigvuldiging heeft en de discriminant van de ring End(E) oneven is.
Stelling 140 generaliseert deze uitspraak.
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