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Real Teichmiiller Spaces and
Moduli of Real Algebraic Curves

J. Huisman

ABSTRACT. This paper is an introduction to the analytic theory of moduli
of real algebraic curves. We prove, in quite some detail, that the moduli
space M g of real algebraic curves of given genus g admits a structure of a
semianalytic variety, and we study its connected components. We show that
M, /g, endowed with this structure of a semianalytic variety, is a coarse moduli

space.
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22. Moduli of real algebraic curves
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1. Introduction

Moduli of real algebraic curves have known growing interest throughout the
past decade [18, 14, 17, 20, 6]. Although the moduli problem of real algebraic
curves is interesting in its own right, the principal motivation to study this moduli
problem—in my opinion—is to understand the topology of real algebraic curves. By
this, I do not mean the topology of single real algebraic curves, but their topology
when they vary in families. To illustrate how the study of moduli of real algebraic
curves can shed light on the topology of families of such curves, I'll give an example
on stable real algebraic curves.

Let us recall the following remark, which is attributed to F. Klein:

REMARK 1.1 ([11, Proposition 2]). Let {C;}ter be a family of real algebraic
curves, varying continuously with ¢. Suppose that the curves C; are nonsingular for
t # 0. Suppose, moreover, that the C; are dividing for ¢t < 0, i.e., Ct(C)\C¢(R) is
not connected for ¢ < 0. Let n_ be the number of connected components of C;(R),
for any t < 0. Let, similarly, ny be the number of connected components of Cy(R)
for any t > 0. If ny > n_, then the curve Cjy has either at least two singularities,
or at least one singularity that is not an ordinary double point.

This remark can be interpreted as a statement on the structure of the moduli
space of stable real algebraic curves. Let Hg /r be the moduli space of stable real
algebraic curves of genus g [17]. Let S be the closure of the subset of nonsingular
dividing real algebraic curves C' € Hg /r such that C(R) has n_ connected com-
ponents. Let T be the closure of the subset of nonsingular real algebraic curves
C € M, such that C(R) has more than n_ connected components. Remark 1.1
can then be expressed by saying that the intersection S N T is of codimension at
least 2 in Mg /r- It is clear that a further study of the geometry of the moduli space
of stable real algebraic curves will lead to generalizations of Remark 1.1. Other
examples of how the study of moduli of real algebraic curves sheds light on the
topology of real algebraic curves can easily be produced.

The study of moduli of real algebraic curves being amply justified, this paper
seeks to explain in a fairly self-contained way the state of the art of the analytic
theory of moduli of nonsingular complete real algebraic curves. This involves the
theory of real Teichmiiller spaces and leads to a natural semianalytic structure
on the moduli space M, r of nonsingular real algebraic curves of given genus g.
The paper makes precise what “natural” means, and shows that the semianalytic
structure of My g is natural. The latter statement should be considered as the
only contribution of the paper to the theory. Although this contribution is to be
qualified as a minor one, it seems to me, nevertheless, an essential one. After all,
any set of cardinality not greater than the cardinality of R admits a semianalytic
structure.

In order to be more precise, here is the statement to which the whole paper is
devoted:
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THEOREM 1.2. Let g be a monnegative integer. Let My/r be the set of iso-
morphism classes of nonsingular complete real algebraic curves of genus g. There
is a unique structure of a semianalytic variety on M, r having the following two
properties.

1. Let M be a real analytic manifold and let C be an analytic family of nonsin-

gular complete real algebraic curves of genus g over M. Let f: M — M, /g
be the map defined by letting f(p) be the isomorphism class of the fiber C,
for any p € M. Then, the map f is analytic.

2. If M;/R is another semianalytic structure on the set M, /r satisfying condi-

tion 1, then the identity map id: My /g — M;/R s analytic.
The number of connected components of the semianalytic variety Mgy g is equal to
[%(39 +4)]. Let X andY be nonsingular complete real algebraic curves of genus g.
The curves X andY belong to the same connected component of My if and only if

they are of the same topological type, i.e., if and only if the following two conditions
hold.

3. The sets of real points X (R) and Y (R) have the same number of connected
components.

4. The sets X(C\X (R) and Y (C)\Y (R) are either both connected or both dis-
connected.

A remark on what is meant by a semianalytic variety is in order. A semianalytic
subset of R™ is a subset S of R™ such that there are a locally closed analytic subset
V of R" and real analytic functions fi,..., fr on V with the property that

We endow a semianalytic subset of R” with the sheaf of analytic functions, so that it
becomes a locally ringed space. A semianalytic variety is a locally ringed space that
is locally isomorphic to a semianalytic subset of some R™. A morphism between
semianalytic varieties is just a morphism between locally ringed spaces. We call
such a morphism an analytic map. This is justified since the structure sheaf of a
semianalytic variety is locally a sheaf of analytic functions, so that a morphism is
essentially an analytic map.

Properties 1 and 2 of Theorem 1.2 express—to my opinion—what coarse semi-
analytic moduli spaces should be in real algebraic geometry (cf. [12, Definition 5.6]
for coarse moduli spaces in algebraic geometry over algebraically closed fields).
Property 1 expresses naturality of the semianalytic structure on M, g. Property 2
is to guarantee its uniqueness. Indeed, given any semianalytic structure on M, /p
satisfying property 1, one can produce another semianalytic structure on M, g by
introducing, for example, cuspidal singularities. That semianalytic structure on
M, /r will then also satisfy property 1, but will not satisfy property 2.

The statement of Theorem 1.2 wants to collect the most significant results in
the analytic theory of moduli of real algebraic curves that are known up to the
present. I would like to give an idea of the arguments that intervene in its proof.

Weichold showed that a nonsingular complete real algebraic curve of genus g
can have [1(3g+4)] different topological types [21], and Klein showed that all these
topological types actually occur [8]. In order to rephrase the Klein-Weichold result
in terms of moduli, let us choose nonsingular complete real algebraic curves X; of
genus g, fori =1,... ,[%(39 + 4)], such that X; and X; have different topological
types whenever i # j. For any nonsingular complete real algebraic curve X, let
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R(X) be the set of isomorphism classes of nonsingular complete real algebraic curves
having the same topological type as X. The Klein-Weichold classification of the
topological types of real algebraic curves can then be expressed by stating that the
set Mg is the disjoint union of the sets R(X;), i.e.,

[ (39+4)]
Myr= J[ R(X).
i=1

In order to endow the set M,/r with a natural structure of a semianalytic
variety, one has to study real Teichmiiller spaces. Observe that a nonsingular
complete real algebraic curve X is essentially a compact Riemann surface endowed
with an action of the Galois group X of C over R. Earle studied the Teichmiiller
space T'(X) of such Riemann surfaces [4]. The space T'(X) is the real Teichmiiller
space of X. Earle showed that T'(X) is a connected real analytic manifold, using
results of Kravetz [10] and Rauch [15]. Moreover, there is a group Mod(X), the
real modular group of X, that acts properly discontinuously on T'(X). The quotient
T(X)/Mod(X) has then a natural structure of a connected semianalytic variety.
Since the quotient T'(X)/Mod(X) is in bijective correspondence with the set R(X),
the set R(X) acquires the structure of a connected semianalytic variety, for any real
algebraic curve X.

It is natural to define a semianalytic structure on M, g as the disjoint sum of
the semianalytic varieties R(X;). This structure of a semianalytic variety on M,/
turns out to satisfy properties 1 and 2 of Theorem 1.2. Therefore, real algebraic
curves of given genus have coarse semianalytic moduli.

One can ask oneself whether the set M, g admits a richer natural structure than
the one of a semianalytic variety. There has been some confusion in the literature
as to whether M g is a real analytic variety. The author showed that M g is not
a real analytic variety if g > 2 [6]. In fact, even more is true: every connected
component R(X;) of M, g is a true semianalytic variety, i.e., a nonanalytic variety
if g > 2. On the contrary, M, r has a natural structure of what is to be called a
semi-Nash variety. In particular, M, /r has a natural semialgebraic structure.

The paper is organized as follows. Sections 2, 3 and 4 recall the well known
correspondence between real algebraic curves, complex algebraic curves endowed
with a Gal(C/R)-action and Riemann surfaces with such an action. In Section 5
we show Weichold’s result on the topological classification of real algebraic curves.
In Sections 6 up to 14, we dissect further the structure of a real algebraic curve.
This will lead, in Section 15, to a proof of Klein’s result that any topological type of
Weichold’s classification actually occurs as the topological type of a real algebraic
curve. It will lead as well, in Section 16, to an elementary proof of the connectedness
of the moduli space R(X) for a real algebraic curve X. From Section 17 up to the
last section, we show that the moduli space M, r admits a natural structure of a
semianalytic variety.

Conventions and notation. An algebraic curve is nonsingular, geometrically
integral and complete [5]. A Riemann surface is compact. Differentiable means of
class C*°. A differentiable manifold has no boundary, unless explicit mention of a
boundary is made (in which case the boundary may be empty). The Galois group
of C over R is denoted by X. Its nontrivial element is denoted by 0. When a
map is said to be equivariant, it is understood that it is equivariant with respect
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to actions of ¥. When ¥ is said to act on a complex algebraic variety, then o is
supposed to act antialgebraically, i.e., its action on sections of the structure sheaf
is antilinear. When ¥ is said to act on a complex analytic variety (X,0), i.e.,
the group ¥ acts on the locally ringed space (X, ), then ¢ is supposed to act
antiholomorphically, i.e., the action of o on sections of O is antilinear. Note that
the present definition of an antiholomorphic action differs slightly from the usual
one. There are certain advantages in considering such algebraic actions of ¥ instead
of the more usual geometric actions of ¥ on complex analytic varieties. When X
acts on a 2-dimensional orientable differentiable manifold, o is supposed to act
orientation-reversingly. For a real number z, the greatest integer less than or equal
to z is denoted by [z].

2. Complex algebraic curves and Riemann surfaces

In this section we show that the category of complex algebraic curves and
the category of Riemann surfaces are isomorphic. We define actions of the Galois
group ¥ on both categories and show that the isomorphism is equivariant with
respect to these actions.

Let X be a complex algebraic curve. Its set of complex points is denoted
by X(C). We endow X (C) with the strong topology and its sheaf of holomorphic
functions. Then, X(C) is a Riemann surface. Obviously, a morphism of complex
algebraic curves f: X — Y induces a holomorphic map, denoted by f(C), from
X (C) into Y(C). Hence, the assignment X — X(C) defines a functor from the
category of complex algebraic curves into the category of Riemann surfaces. We
show that this functor is an isomorphism of categories.

If M is a Riemann surface, there is a unique complex algebraic curve X such
that the induced Riemann surface X (C) is equal to M. Indeed, let X be the union
of the set M and a point n which is to be the generic point of X. Endow X with
the topology for which proper subsets C' of X are closed if and only if C is finite
and does not contain 7. The structure sheaf O on X is defined as follows. Let K

be the field of meromorphic functions on M. For a nonempty open subset U of X
define

TU,0)={feK|VpeUNM:ord,(f) >0}.

Then, X is a complex algebraic curve. It is clear that X is the unique complex
algebraic curve such that the induced Riemann surface X (C) is equal to M. This
shows that the functor X — X (C) is surjective.

The functor in question is clearly faithful. In order to show that it is fully
faithful, let f: M — N be a holomorphic map of Riemann surfaces. Let X and
Y be the complex algebraic curves such that X(C) = M and Y(C) = N. Then,
f induces a morphism h: X — Y of complex algebraic curves. Indeed, let K and
L be the fields of meromorphic functions on M and N, respectively. Then, if f is
nonconstant, f induces a morphism of fields f*: L — K. Since K and L are also
the function fields of X and Y, and since X and Y are nonsingular and complete,
there is a morphism h: X — Y such that h* = f*. It follows that h(C) = f. In fact,
h is the unique morphism from X into Y such that the induced holomorphic map
h(C) is equal to f. This proves that the functor X — X (C) is an isomorphism from
the category of complex algebraic curves into the category of Riemann surfaces.

The Galois group X of C over R acts on the category of complex algebraic
curves. Indeed, let X be a complex algebraic curve. Then, one has a structure
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morphism s: X — Spec(C). The conjugate algebraic curve X° of X is the scheme
X equipped with the structure morphism Spec(c) o s. It is clear that the complex
algebraic curve (X7)? is equal to X.

Let f: X — Y be a morphism of complex algebraic curves. Then, f consid-
ered as a map from the scheme X7 into Y7 is, in fact, a morphism of complex
algebraic curves. This morphism is denoted by f7. It follows immediately that the
assignment X — X defines an action on the category of complex algebraic curves.

One can similarly define an action of ¥ on the category of Riemann surfaces.
Let M = (M, O) be a Riemann surface. In particular, O is a sheaf of C-algebras.
Let O be the same sheaf but with the conjugate C-algebra structure. Then, the
locally ringed space (M, Q7) is a Riemann surface, the conjugate Riemann surface,
denoted by M°.

Let f: M — N be a holomorphic map. Then, f is automatically a holomorphic
map from M7 into N?. This map is denoted by f?. It then immediately follows
that the assignment M — M? defines an action of ¥ on the category of Riemann
surfaces.

The isomorphism X — X (C) from the category of complex algebraic curves
into the category of Riemann surfaces is equivariant with respect to the actions
of X. Indeed, for a complex algebraic curve X one has X(C)? = X?(C), and for a
morphism f of complex algebraic curves one has f(C)? = f7(C).

3. Antialgebraic and antiholomorphic actions

In this section we show that there is an isomorphism from the category of
complex algebraic curves endowed with an action of X into the category of Riemann
surfaces endowed with an action of ¥. If one allows oneself to use the GAGA-
principle [19], one can prove that there is an equivalence between the category
of complete algebraic varieties endowed with an action of ¥ and the category of
complex analytic varieties that admit an algebraic structure and which are endowed
with an analytic action of ¥. But, in dimension 1, one can avoid the GAGA-
principle, as we will do here.

Let X be a complex algebraic curve endowed with an action of X. Note that,
according to our conventions, such an action is antialgebraic. It is clear that this
action induces an action of ¥ on the Riemann surface X(C). Let Y be also a
complex algebraic curve endowed with an action of ¥, and let f: X — Y be an
equivariant morphism of complex algebraic curves. Then, the induced holomorphic
map f(C) is also equivariant. To put it otherwise, the assignment X — X (C) is a
functor from the category of complex algebraic curves endowed with an action of ¥
into the category of Riemann surfaces endowed with an action of ¥. We show that
this functor is an isomorphism of categories.

It follows from what we have seen in Section 2 that the functor under consider-
ation is fully faithful. Hence, in order to show that the functor is an isomorphism,
it suffices to show the following. Let M be any Riemann surface endowed with
an action of ¥. Let X be the complex algebraic curve such that X(C) = M. We
have to show that there is an action of ¥ on X such that its induced action on
M = X (C) coincides with the initial action of ¥ on M.

Let the identity map from M into M? be denoted by ops. Similarly, let the
identity map from X into X7 be denoted by ox. Of course, o, is antiholomorphic
and ox is antialgebraic. Let ¢p: M — M be the antiholomorphic map corresponding
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to the action of o on M. Then,
omop: M — M°

is a holomorphic map. According to the isomorphism between the category of
complex algebraic curves and Riemann surfaces (cf. Section 2), there is a morphism
of complex algebraic curves f: X — X7 such that f(C) = o o ¢. Then, the
antialgebraic morphism

'Qb = 0xes O f: X— X
satisfies 92 = idx. Indeed,

¥*)(C) = 9 (C)?

oue o f(C) oome o f(O)

= OpNe OONMOPOTNs OTM OP
:idMocpoidMogp

— idx(C).

Therefore, there is an action of ¥ on X such that o acts as the antialgebraic
map . It immediately follows that this action of ¥ on X induces an action on M
that coincides with the given action of ¥ on M. Therefore, the functor X — X (C)
is an isomorphism from the category of complex algebraic curves endowed with a
Y-action onto the category of Riemann surfaces endowed with a X-action.

4. Real algebraic curves and Riemann surfaces

In this section we show that there is an equivalence between the category of
real algebraic curves and the category of complex algebraic curves endowed with an
action of ¥. This equivalence, in such generality, does not hold in higher dimensions.

Let X be a real algebraic curve. Then, X¢ = X ®g C is a complex algebraic
curve. This complex algebraic curve comes with a canonical antialgebraic action
of ¥. Let Y be also a real algebraic curve, and let f: X — Y be a morphism of real
algebraic curves. Then, fc = f ®grid is a morphism of complex algebraic curves
from X¢ into Y¢. In fact, this morphism is equivariant with respect to the action
of ¥. To put it otherwise, the assignment X +— X¢ is a functor from the category
of real algebraic curves into the category of complex algebraic curves endowed with
a Y-action.

Observe that the functor in question is faithful. In order to see that the functor
is fully faithful, note that the canonical map X¢ — X is a quotient map for the
action of ¥ on X¢ if X is a real algebraic curve. Hence, if Y is also a real algebraic
curve and h: X¢ — Y¢ is an equivariant morphism, A induces a morphism f: X —
Y such that fc = h. This show that the functor in question is fully faithful.

In order to show that the functor X — X¢ is an equivalence from the category of
real algebraic curves onto the category of complex algebraic curves endowed with a
Y-action, it now suffices to show the following. Let X' be a complex algebraic curve
endowed with an action of ¥. Then, there is a real algebraic curve X such that X¢
is equivariantly isomorphic to X'. To show this, one can choose, by Riemann-Roch,
a very ample divisor D on X' such that *D = D. One may then assume that the
associated embedding ¢: X' — PZ is equivariant. Of course, the quotient PZ/% of
PZ as a locally ringed space is the scheme PR. It follows that the quotient X'/¥
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of X' as a locally ringed space is isomorphic to the closed subscheme +(X')/X of
PZ. Clearly, this closed subscheme is a real algebraic curve. Therefore, X = X'/X
is a real algebraic curve, and, obviously, X¢ is equivariantly isomorphic to X'. It
follows that the assignment X — X¢ is an equivalence between the category of
real algebraic curves and the category of complex algebraic curves endowed with
an action of X. In particular, by what we have seen in Section 3, the assignment
X — X(Q) is an equivalence between the category of real algebraic curves and the
category of Riemann surfaces endowed with an action of X.

5. Topology of real algebraic curves

In this section we will prove Weichold’s result on the classification of topological
types of real algebraic curves. We shall do this in quite some detail.

In this section, we consider, for a real algebraic curve X, its set X (C) of complex
points as a differentiable surface. The action of ¥ on X (C) is a differentiable action.
The canonical map from the set of real points X (R) into the set of complex points
is injective. Its image is the set of fixed points X (C)* for the action of ¥ on
X(C). We identify X (R) with its image X(C)* in X(C). Locally, the action of
Y. can be linearized at real points of X [2, §4]. It follows that X (R) is a compact
1-dimensional submanifold of X (C) if X (R) is not empty. More precisely, we have
the following statement.

LEMMA 5.1. Let X be a real algebraic curve and let p € X (R). then, there are
an open neighborhood U of p in X(C), an open neighborhood U' of 0 in B2 and a
diffeomorphism ¢: U — U' such that ¢(p) =0 and

o9 (@y) =9 (z,~y)
for all (z,y) € U'. In particular, X (R) is a compact 1-dimensional submanifold of
X(©) if X(R) is nonempty.

PRrROOF. Let U be an open neighborhood of p such that there is a diffeomor-
phism ¢ from U onto an open subset U’ of R2. We may suppose that p(p) = 0.
Replacing U by U N (o - U), we may assume that U is stable for the action of ¥,
i.e., 0 -U CU. Then, ¥ acts on U.

Since p is a fixed point for the action of X, one has the tangent action of ¥ on
the tangent space T, X (C). Then, there is a unique action of ¥ on ToU' such that
the tangent map T, is equivariant. Identify the tangent space ToU' with R? in
the canonical way. Since ¢ acts orientation-reversingly on X (C), we may assume
that o acts as (z,y) — (z,—y) on R?. Consider the map $: U — R2? defined by

P(z) = p(z) +0-p(0 - z)
for x € U. It is clear that ¢ is an equivariant differentiable map. Since T,y is
equivariant, T,¢ = 2T,¢p. In particular, ¢ is a local diffeomorphism. Shrinking U,
one may assume that ¢ is a diffeomorphism. Replacing ¢ by @, the map ¢: U — U’
is an equivariant diffeomorphism from a ¥-stable open neighborhood U of p in X (C)
onto a Y-stable open neighborhood U’ of 0 in R?, where the action of ¥ on R? is
defined by o - (z,y) = (x, —y) for (z,y) € R2. This proves the lemma. O

Next, it will be convenient to show in quite some detail that the quotient
X (C)/% of the differentiable manifold X (C) in the category of locally ringed spaces
is a differentiable manifold with boundary. Denote the sheaf of differentiable func-
tions on X(C) by €. Let n: X(C) — X (C)/% be the quotient map of topological
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spaces. One has an action of ¥ on the sheaf m.& on X(C)/X. Then, the structure
sheaf of the quotient X (C)/X in the category of locally ringed spaces is the sheaf
(mE)F of invariant sections of m.&. It is clear that X (C)/Z is a differentiable man-
ifold at the m-images of nonreal points of X (C). That the quotient X (C)/X is a
differentiable manifold with boundary will then follow from a local presentation of
the quotient map at a real point.

Let H denote the closed real upper-half plane { (z,y) € R? | y > 0} considered
as a differentiable manifold with boundary.

PROPOSITION 5.2. Let p € X(R) and let ¢ = w(p) be its image. There are an
open neighborhood V of q, open subsets U' of B2 and V' of H, a diffeomorphism
o: U=7"1(V) = U’ and an isomorphism of locally ringed spaces 1»: V — V' such
that

pomop~(z,y) = (z,97)
for (z,y) € U'. In particular, the locally ringed space (X(C)/%, (m<E)¥) is a dif-
ferentiable surface with boundary, its boundary is equal to the w-image of the set of
real points X (R) of X, and the quotient map w: X (C) — X(C)/X is a differentiable
map.

PRrROOF. By Lemma 5.1, there are an open neighborhood U of p in X(C), an
open neighborhood U’ of 0 in R? and a diffeomorphism ¢: U — U’ such that
e(p)=0and o-p 1(z,y) = ¢ (z,—y). To put it otherwise, ¢ is equivariant with
respect to the action of ¥ on R? defined by o - (z,y) = (z, —y).

Let p: R2 — H be the differentiable map defined by p(z,y) = (z,4?) for (z,y) €
R2. Let V' = p(U'). Then, p is the quotient of R? by the action of ¥ in the category
of locally ringed spaces. In particular, its restriction pjyr: U' — V' is the quotient
of U’ by the action of ¥ in the category of locally ringed spaces. Since my: U = V
is the quotient of U by the action of ¥ in the category of locally ringed spaces,
there is an isomorphism of locally ringed spaces 1: V' — V' such that the diagram

Uv—=u

mul lp'”'

!
V—>¢ |4

commutes. This means that ¢ o w0 p~1(z,y) = (z,y?) for (z,y) € U'. O

Let X be a real algebraic curve. Let g = g(X) be its genus. One calls X
dividing whenever X (C)\ X (R) is not connected. Otherwise, X is nondividing.

Observe that the number of connected components of U = X(C)\X (R) is at
most 2. Indeed, the quotient U/X is diffeomorphic to the interior of the surface with
boundary X (C)/X. Since X(C)/X is connected, U/¥ is connected. Now, ¥ acts
fixed point-freely on U. Hence, X (C)\ X (R)U has at most 2 connected components.

Note also that, since o acts orientation-reversingly on X (C) (cf. Section11), the
quotient U/X is orientable if and only if X is dividing. Since U/ is diffeomorphic
to the interior of X (C)/X, the real algebraic curve X is dividing if and only if
X (C)/% is orientable.

For a real algebraic curve X, let ¢ = ¢(X) denote the number of connected
components of the set X (R) of real points of X.
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THEOREM 5.3 (Weichold [21]). Let X be a real algebraic curve. Let g = g(X)
and ¢ = ¢(X). Then,
1<c<g+landc=g+1 mod?2 ifX is dividing, and
0<c<yg if X is nondividing.
PrOOF. Let U be the complement of X (R) in X (C). Let 7 be the inclusion
of X(R) into X (C), and let j the inclusion from U into X (C). Then, we have a

short exact sequence of sheaves on X (C) (we refer to [7] for notation and facts on
sheaves and their cohomology):

0— j!ZU — ZX((C) — i*ZX(R) — 0.
Taking FEuler characteristics, one obtains

x(X(Q) = x(11Zv) + x(ixZ x (w))
= Xc(U) + x(X(R))
= XC(U)7

where x. denotes the Euler characteristic with compact support. Note that the Eu-
ler characteristic x(X (R)) of X (R) vanishes since X (R) is a compact differentiable
curve. Since X (C) admits the structure of a Riemann surface of genus g, one has
X(X(C)) = 2 —2g. Moreover, the group X acts fixed-point freely on U. Therefore,

Xe(U/2) = 3x(U) = 5x(X(C)) =1 ~g.
Denoting the inclusions of U/¥ and X (R) into X (C)/X also by j and 4, respectively,
one has a short exact sequence
00— j!ZU/E — Zx((c)/z — i*Zx(R) — 0.

Taking again Euler characteristics, one gets

x(X(Q)/%) = x(11Zy/s) + x(IxZx(w))
=x.(U/%E) + x(X(R))

= %XC(U)
=1-g.

Now one has to distinguish the case whether the real algebraic curve X is dividing
or not.

Suppose that X is dividing. Then, the quotient X (C)/¥ is orientable. Hence,
X (Q)/% is diffeomorphic to the complement of ¢ disjoint open disc in an orientable
compact differentiable surface of genus ¢', say. Then,

XX(©Q/x)=2-2¢'-c.

It follows that ¢ = g + 1 — 2¢g'. This shows that c= g+ 1 mod 2 and ¢ < g + 1.
One has ¢ > 1, since a dividing real algebraic curve necessarily has real points.

Suppose that X is nondividing. Then, X (C)/X is not orientable. It follows
that X(C)/¥ is diffeomorphic to the complement of ¢ disjoint open discs in a
nonorientable surface of genus ¢', say. Then,

XX(©)/2)=2-4¢' -c
Hence, c =1+ g — ¢'. Tt follows that 0 < ¢ < g, since ¢’ > 0. O
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I cannot resist mentioning the following famous consequence of Weichold’s clas-
sification.

COROLLARY 5.4 (Harnack’s Inequality). Let X be a real algebraic curve. Let g
be the genus of X and let ¢ be the number of connected components of X (R). Then,
c<g+1. O

One has the following converse to Theorem 5.3. Given integers g and ¢ satisfying
1<c¢c<g+landc=g+1 mod 2, there is a dividing real algebraic curve X such
that g(X) = g and ¢(X) = ¢. Also, given integers g and ¢ satisfying 0 < ¢ < g, there
is a nondividing real algebraic curve X such that g(X) = g and ¢(X) = ¢. This
statement goes back to Klein [8]. A modern proof is due to Alling and Greenleaf [1].
Their proof essentially constructs the real algebraic curves as ramified coverings
of PL. In Section 15, we shall show the converse to Theorem 5.3 in another way.

Classically, the topological type of a real algebraic curve X of genus g is defined
as the data of ¢(X) and its qualification of being dividing or not. The following
well-known proposition provides useful equivalent conditions for two real algebraic
curves to be of the same topological type.

PROPOSITION 5.5. Let X and Y be real algebraic curves of the same genus.
Then, the following condition are equivalent.

1. The differentiable manifolds X(C) and Y(C) are equivariantly diffeomor-
phic.

2. The quotients X (C)/¥ and Y (C)/% are diffeomorphic.

3. X and Y are either both dividing or both nondiwiding, and ¢(X) = ¢(Y).

Proor. The implication 1 = 3 is trivial. We show 3 = 2 and 2 = 1. Let g be
the genus of X. To simplify notation, let M = X(C) and N =Y (C).

3= 2: Let g = g(X) and ¢ = ¢(X). We have seen that the differentiable
manifold with boundary M/X is orientable if X is dividing and is nonorientable if
X isnondividing. In the proof of Theorem 5.3, we have seen that, in the former case,
M/¥ is diffeomorphic to the complement of ¢ disjoint open discs in an orientable
compact surface of genus g’ = 3(1+g—c). In the latter case, M/ is diffeomorphic
to the complement of ¢ disjoint open discs in a nonorientable compact surface of
genus g¢' =1+ g —c. Since g(Y) =g, ¢(Y) = c and Y is dividing if and only if X
is dividing, the same holds for N/X. Hence, M /% and N/X are diffeomorphic.

2 = 1: We show that the differentiable manifold M, together with the action
of ¥, is uniquely determined, up to equivariant diffeomorphism, by its quotient
M/X. Indeed, let T(M/X) be the tangent bundle of M/%, and T(M/X)Y its dual
bundle. Let L be the line bundle

L= A\TM/D)")

on M/X. As is true for the tensor square of any line bundle, L®? is isomorphic to
the trivial line bundle 7" on M /3. Choose an isomorphism ¢: L®2 — T such that
p(w®w) > 0 for all elements w of any fiber of L. We identify L®? and 7T through .
Choose a differentiable function f on M /¥ such that f > 0, f~1(0) = 8(M/%) and
df #0 on 9(M/X). Define

M={(pwel|lwadw=f(p)}
Then, a local consideration reveals that M’ is a differentiable submanifold of L
without boundary. Let p: M’ — M /Y be the map defined by p(p,w) = p. Then p,
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being the restriction of the projection L — M/¥, is a differentiable map. Observe
that the pair (M, p) is uniquely determined by M /X, up to diffeomorphism. We
call the map p: M’ — M /¥ the double cover of M /Y ramified along its boundary.

Define an action of ¥ on M’ by ¢ - (p,w) = (p, —w). Then a local consideration
shows that p is a quotient map for the action of ¥ on M'. In particular, p induces
a diffeomorphism between M'/X and M/X.

Now, we show that M’ is equivariantly diffeomorphic to M. Let 7: M — M/
be the quotient map. Let ¢ € M. Since M = X(C), the differentiable manifold M
is canonically oriented (see Section 11). If ¢ is not a fixed point for the action of ¥,

then there is a unique
2

w(a) € AT (M/D)7)

such that w(g)®w(g) = f(n(g)) and such that 7*w(q) defines an orientation of T, M
that coincides with its initial orientation. If ¢ is a fixed point of X, we define w(q)
to be 0. Define a map h: M — M' by h(q) = (7(q),w(q)). It follows from the local
presentation of 7w at fixed points of ¥ (e.g. Proposition 5.2) that h is a submersive
differentiable map. Since o acts orientation-reversingly on M, h is equivariant,
surjective and injective. Hence, h is an equivariant diffeomorphism. [l

6. Complex structures

In this section we recall notions related to complex structures on real vector
spaces. These will be used when we study almost complex structures on differen-
tiable manifolds.

Let V be a real vector space. A complex structure on V is a morphism ®: C —
End(V) of R-algebras. This is equivalent to a structure of a complex vector space on
V such that the induced structure of a real vector space coincides with the given real
structure of V. In particular, a finite-dimensional real vector space has a complex
structure only if it is of even dimension. Since C = R[v/—1], a complex structure ®
on V is completely determined by the image of v/—1 in End(V). Therefore, it also
is equivalent to give a complex structure on V or to give an endomorphism J of V
such that J? = —id.

Let V and V' be real vector spaces equipped with complex structures ® and
') respectively. An R-linear map L: V — V' is complez if Lo ®(\) = ®(\) o L for
all A € C. Of course, this is equivalent to requiring L to be C-linear with respect
to the corresponding structures of C-vector spaces. In terms of the endomorphisms
J = ®(/—-1) and J' = &'(y/—1), the condition on L is that Lo J = J'o L.

Let L: V — V' be an R-linear isomorphism of real vector spaces. If ®' is a
complex structure on V', then there is a unique complex structure ® on V such
that L is complex with respect to ® and ®'. Indeed, one defines ® by ®(\) =
L7 1o ®'(\) o L for A € C. This induced complex structure is denoted by L*®’.

Let V be a finite-dimensional real vector space. A complex structure ¢ on
V induces an orientation vg of V. Indeed, let {vy,...,v,} be a basis of V as a
complex vector space. Then, one puts

v = [v1,Jv1, ... ,vp, JUp],

where J = ®(y/—1). If V is an oriented finite-dimensional real vector space, then
a complex structure ® on V is said to be compatible with the orientation if ve
coincides with the orientation of V.
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Let V be a real vector space and let & be a complex structure on V. The
complex conjugate structure ® is defined by ®(\) = ®()) for A € C. In terms of
J = ®(y/—1), the complex conjugate structure is given by the endomorphism —.J.
If V is finite-dimensional, say 2n = dim V, then the orientation vz induced by & is
opposite to vg if n is odd. Otherwise, vy = vg.

7. Conformal structures

In this section we recall some notions relative to conformal structures on real
vector spaces. These will be useful when we study conformal structures on differ-
entiable manifolds.

Recall that an inner product on a real vector space is a positive definite sym-
metric bilinear form. Let (-,-) and (-,-)’ be inner products on a real vector space V.
We say that these two inner products are proportional if there is a positive real
number A such that

(an)l =A- <an>
for all v,w € V. Obviously, the proportionality relation is an equivalence relation.
A conformal structure on V is the proportionality class of an inner product on V.

Recall that one has a bijective correspondence between positive definite sym-
metric bilinear forms and positive definite quadratic forms. Indeed, if (-,-) is a pos-
itive definite symmetric bilinear form on V', then ¢: V' — R defined by ¢(v) = (v, v)
is the associated positive definite quadratic form on V. The assignment (-,-) — ¢
is the desired bijective correspondence.

Let ¢ and ¢’ be positive definite quadratic forms on V. We say that ¢ and
q are proportional if there is a positive real number A\ such that ¢’ = X -¢. This
proportionality relation is also an equivalence relation. It then follows from the
preceding paragraph that it is equivalent to give a conformal structure on V or to
give the proportionality class of a positive definite quadratic form on V.

Let V and V' be real vector spaces. Let L: V — V' be an R-linear isomorphism.
If ' is a conformal structure on V', then one has an induced conformal structure
L*¢" on V. Indeed, let (-,-)' be a representing inner product of ¢'. Then, the
bilinear form (-,-) = L*(:,-) on V defined by

(v,w) = (Lv, Lw)’

is an inner product. Its proportionality class does not depend on the choice of (-, -)’,
and therefore defines a conformal structure L*¢' on V.

Let V and V' be real vector spaces equipped with conformal structures ¢ and
o', respectively. An R-linear isomorphism L: V — V' is conformal if L*¢' = ¢.

8. Complex and conformal structures

In this section we recall how complex and conformal structures on 2-dimensional
real vector spaces are related.

A complex structure ® on a 2-dimensional real vector space V induces a con-
formal structure on V. Indeed, let .J be the endomorphism &(y/—1) of V, and let
x be any nonzero element in the dual of V. Put y = z o J. Define a quadratic form
g, on 'V by

@ (v) = 2(v)” +y(v)?
for all v € V. Then, g, is a positive definite quadratic form. We show that the
proportionality class of ¢, does not depend on z. Let z’ be also a nonzero element
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of the dual of V. Then, z' = ax + by for some a,b € R, not both zero. If we put
y' =x' o J, then y' = —bx + ay and

gor (v) = 7' (v)* +y'(v)? =
= a’z(v)? + 2abz(v)y(v) + b*y(v)* +
+ b2z (v)? — 2abz(v)y(v) + a®y(v)? =
= (a® +07) - (z(v)? +y(v)*) =
= (a® + V%) - g: (v)

for all v € V. We see that the conformal structure ¢ defined by ¢, does not depend
on the choice of z. Therefore, a complex structure ¢ on a 2-dimensional real vector
space determines a conformal structure ¢.

Let V be a 2-dimensional real vector space. Let ® be a complex structure on V
and let ¢ be the induced conformal structure. It follows from its construction that
¢ is also the conformal structure associated to the conjugate complex structure ®.
Therefore, an unordered pair of conjugate complex structures on V determines a
conformal structure.

Conversely, a conformal structure on a 2-dimensional vector space V' deter-
mines an unordered pair of conjugate complex structures on V. Indeed, let ¢ be
a conformal structure on V. Choose a representing inner product (-,-) of ¢. Let
SO(V) be the special orthogonal group of V' with respect to (-,-). Then, there
are exactly two elements .J, J' of SO(V) satisfying the equation X2 = —id. Let
® and @' be the associated complex structures on V. Since J' = —J, & and @’
are each other’s complex conjugate structure. Since the subgroup SO(V') of GL(V)
only depends on the conformal structure, this unordered pair of conjugate complex
structures does not depend on the choice of (-, ).

Observe that the preceding constructions give rise to a bijective correspondence
between the set of conformal structures on a 2-dimensional real vector space V and
the set of unordered pairs of conjugate complex structures on V. If one gives
oneself an orientation v of V', then for each unordered pair of conjugate complex
structures, exactly one of them is compatible with the orientation v. Therefore,
given an oriented 2-dimensional real vector space (V, v), we actually have a bijective
correspondence between the set conformal structures on V' and the set of complex
structures on V compatible with v.

This bijective correspondence is natural. Indeed, let V' and V' be 2-dimen-
sional real vector spaces. Let L: V — V' be an R-linear isomorphism. Let &' be a
complex structure on V' and let ¢’ be its associated conformal structure. Then, it
follows from their definitions that the conformal structure associated to the complex
structure L*®’ is equal to the conformal structure L*p'.

As a consequence, an orientation-preserving R-linear isomorphism L is complex
if and only if it is conformal. More precisely, let V' and V' be oriented 2-dimensional
real vector spaces. Let ® and &' be complex structures on V' and V' compatible
with the orientations. Let ¢ and ¢’ be the corresponding conformal structures. An
orientation-preserving R-linear isomorphism L from V into V' is complex if and
only if it is conformal.
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9. Beltrami coefficients

When endowed with some extra structure, conformal structures on a 2-dimen-
sional real vector space are in bijective correspondence with the set of complex
numbers of norm less than 1. These associated complex numbers are called Beltrami
coeflicients. In this section we explain this bijective correspondence.

Let V be a 2-dimensional real vector space. We fix a reference complex structure
®y on V and a Clinear isomorphism z: V' — C with respect to ®9. Let ¢ be any
conformal structure on V. Let ¢ be a representing positive definite quadratic form

of p. Putz = 2(z+2) and y = 2\E(z —Z). Then, {z,y} is a basis for the real

dual of V. Therefore, there are a, b, c € R such that ¢ = az? + 2bzy + cy?. Since ¢
is positive definite, a,c > 0 and > — ac < 0. Now, one easily checks that there are
unique A € Rt and p € C, |u| < 1, such that

q=\-|z+ pz*.

It follows that the complex number u of norm less than 1 is uniquely determined by
the conformal structure ¢. This complex number y is called the Beltrami coefficient
of .

Conversely, given p € C with |p| < 1,

q=|z+pzl

defines a positive definite quadratic form on V. Thus, the equivalence class of q is
a conformal structure ¢ on V. Clearly, its Beltrami coefficient is equal to u.

In conclusion, the assignment ¢ — p defined above gives rise to a bijective
correspondence between the open unit disc in C and the set of conformal structures
on a 2-dimensional real vector space equipped with a reference complex structure
and a C-linear isomorphism onto C.

Here is a geometric interpretation of the Beltrami coefficient of a conformal
structure. Let p be a complex number satisfying |u| < 1. Let ¢ be the quadratic
form |z + pz|?. Then, the unit circle |2|> = 1 in V is, with respect to the quadratic
form ¢, an ellipse whose longest semiaxis is of length 1 + |u|, and whose shortest
semiaxis is of length 1 — |u|. Moreover, the angle between the longest semiaxis
and the positive z-axis is equal to %arg(u). Therefore, the Beltrami coefficient p
of a conformal structure ¢ measures the amount of distortion with respect to the
reference complex structure.

It should be noted that the Beltrami coefficient of a conformal structure de-
pends on the choice of the C-linear isomorphism. Indeed, let 2z and 2’ be C-linear
isomorphisms from V onto C. Let ¢ be any conformal structure on V. Let y and
1’ be the Beltrami coefficients of ¢ relative to z and 2/, respectively. Since z and 2’
are both C-linear isomorphisms, there is a nonzero k € C such that z = kz’. Hence,

=12 __ 2 K2
o+ izl = |6l - |2 + 2P

Therefore, p' = p=.

Let V be a 2-dimensional real vector space, ¢y a complex structure on V and
z: V — C a Clinear isomorphism. Let ¢ be any conformal structure on V. Let
1 be the Beltrami coefficient of ¢. It follows from its definition that the Beltrami
coefficient of ¢ relative to the complex conjugate structure ®; and the C-linear
isomorphism Z is equal to 7.
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10. Complex dilation

In this section we recall the definition of the complex and circular dilations
of, essentially, an R-linear isomorphism between 2-dimensional real vector spaces
equipped with conformal structures.

Let V be a 2-dimensional real vector space equipped with a reference complex
structure ®¢ and a Clinear isomorphism z: V — C. Denote the corresponding
conformal structure by o (see Section 8). Let V' be any 2-dimensional real vector
space equipped with a conformal structure ¢'. Let L: V — V' be an R-linear
isomorphism. The complex dilation ur of L is by definition the Beltrami coefficient
of the induced conformal structure ¢ = L*¢'. Clearly, L is conformal with respect
to o and ¢' if and only if ur = 0.

The complex dilation of L can be easily determined as follows. Let ®' be
the complex structure on V' inducing the conformal structure ¢’ such that L is
orientation-preserving with respect to the orientations induced by ®; and ®’. Let
z': V' = C be a Clinear isomorphism with respect to ®'. There are a, 8 € C such
that L*z' = az + BZ. Since L is an orientation-preserving isomorphism, |a| > |3].
Then,

L*' > = |az + BZ* = |af* - |2 + £ - 22,
since a # 0. Hence, ur, = g Once again, one sees that L is conformal if and only
if ML = 0.

Let p be the complex dilation of L. Let ¢' be the quadratic form |2’ + pz
on V'. Then, the image by L of the unit circle |2|> = 1 is an ellipse whose longest
semiaxis is of length 1 + |u| and whose shortest semiaxis is of length 1 — |u|. One
defines the circular dilation of L as the fraction

_ 141y

1—ul’
Clearly, v, is a real number greater than or equal to 1. Moreover, v;, = 1 if and
only if L is conformal with respect to ¢g and ¢'.

/|2

YL

11. Almost complex manifolds

In this section we recall the definition of almost complex structures on differ-
entiable manifolds and some related notions.

Let M be a differentiable manifold. Let TM be the tangent bundle of M. An
almost complex structure on M is a complex structure ®, on the tangent space
T,M of M at every point p of M such that ®(\) - X is a differentiable vector field
for every differentiable vector field X on M and for all A € C. Equivalently, an
almost complex structure on M is a morphism ®: C — End(TM) of R-algebras.
This is also equivalent to a structure of a complex vector bundle on TM such
that the induced structure of a real vector bundle coincides with the original real
structure on TM. In particular, a differentiable manifold has an almost complex
structure only if it is of even dimension. Of course, an almost complex structure
on M is entirely determined by the image of v/—1 in End(TM). Therefore, it is
equivalent to give an almost complex structure on M or to give an endomorphism
J of TM satisfying J> = —id. An almost complex manifold is a differentiable
manifold equipped with an almost complex structure.

Let M and M' be differentiable manifolds equipped with almost complex struc-
tures ® and &', respectively. A differentiable map f: M — M’ is said to be almost
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complez if the R-linear map T}, f is complex with respect to the complex structures
@, and @}(p) at every point p of M.

Let M and M’ be differentiable manifolds. Let f: M — M’ be a local diffeo-
morphism. Let &' be an almost complex structure on M’. Then, there is a unique
almost complex structure & on M such that f is almost complex. Indeed, for any
p € M, the tangent map T, f is an R-linear isomorphism. Therefore, there is a
unique complex structure ®, on T, M such that T}, f is complex. It follows from
the construction of ®, that ® is an almost complex structure on M. This almost
complex structure is denoted by f*®’.

An almost complex structure ® on M induces an orientation on M. Indeed, at
each point p of M we have a complex structure ®, on the fiber T,//. We have seen
in Section 6 that such a structure induces an orientation of T, M. This orientation
depends smoothly on p, and therefore gives an orientation of M. If M is oriented,
then @ is said to be compatible with the orientation if ®, is compatible with the
orientation of T, M for all p € M.

Let ® be an almost complex structure on a differentiable manifold M. Then,
its conjugate almost complex structure ® is defined by ®, = (®,) for all p € M.

12. Complex analytic and almost complex manifolds

In this section we recall the relationship between complex analytic manifolds
and almost complex manifolds.

Let N be a complex analytic manifold. We denote by T the complex tangent
bundle of N. We write Ny, when we want to stress that we consider N as a
differentiable manifold, i.e., forgetting about the complex analytic structure. The
point we want to make is that Ny, has a canonical almost complex structure. This
can be seen as follows. The complex vector bundle T is canonically a subbundle of
the complexification C ®g T Ngm of the real tangent bundle T Ngy,. Denote by T
its image by complex conjugation. Then,

CRTNgm=ToT.

But, as a real vector bundle, C ®g T Ngp, is also the direct sum of T'Ng,, and
v/—=1-T'Ngpm. One then has an associated projection from C®g T Ny, onto T Ngm. It
is easy to check that its restriction to the complex subbundle T is a real isomorphism
onto T'Ngm. By transport of structure, one gets a structure of a complex vector
bundle on T Ngp,, i.e., an almost complex structure on Ngp,.

The assignment N +— Ngp, is clearly a functor from the category of complex
analytic varieties into the category of almost complex manifolds. Indeed, let N and
N' be complex analytic manifolds. If f: N — N’ is a holomorphic map then, of
course, f is differentiable considered as a map from Ngm into Nj,,, and moreover,
f is almost complex.

This functor is in fact fully faithful, i.e., any almost complex differentiable
map f: Ngm — N, is holomorphic [9, Proposition 2.3]. In particular, N and N’
are biholomorphic if and only if N and N’ are diffeomorphic as almost complex
manifolds.

In the case of 2-dimensional differentiable manifolds, an almost complex struc-
ture on a differentiable manifold always comes from a complex structure. Let M be
a 2-dimensional differentiable manifold and let ® be an almost complex structure
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on M. Then, M is the differentiable structure Ngm of a complex analytic mani-
fold N [9, Example IX.2.8]. Moreover, the almost complex structure on M induced
by this complex analytic structure coincides with ®.

What this shows is that, given a 2-dimensional differentiable manifold M, there
is a bijective correspondence between the set of almost complex structures on M
and the set of complex analytic structures on M.

Next, we study the behavior of this bijective correspondence with respect to
conjugate complex structures. Let M be a 2-dimensional differentiable manifold.
Let N be a complex analytic structure on M, i.e., N is a complex analytic variety
with Ngm = M. Let ® be the almost complex structure on M induced by N. Then,
the conjugate Riemann surface N7 is also a complex analytic structure on M. The
almost complex structure on M induced by N7 is equal to the conjugate almost
complex structure ® of ® (see Section 11).

Let M be a 2-dimensional orientable differentiable manifold endowed with an
action of ¥. Let N be a complex analytic structure on M. If the action of ¥ on
M is an action of ¥ on the Riemann surface N, then the almost complex structure
® on M induced by N satisfies 0*® = ®. Conversely, let ® be an almost complex
structure on M such that 0*® = ®. Let N be the associated complex analytic
structure on M. Then, the action of ¥ on M is an action of ¥ on the Riemann
surface N.

13. Conformal manifolds

In this section we define the notion of a conformal manifold and some related
notions.

Let M be a differentiable manifold. Let (-,-) and (-,-)’ be Riemannian metrics
on M. One calls (-,-) and (,-)" proportional if the inner products (-, -), and (:,-),
are proportional at every point p of M. Equivalently, (-, -) and (-, )’ are proportional
if there is a differentiable map A: M — Rt such that

(X,Y) = X-(X,Y)

for all differentiable vector fields X and Y on M. A conformal structure on M is the
proportionality class of a Riemannian metric on M. If ¢ is a conformal structure
on M, then ¢ induces a conformal structure ¢, at T, M for allp € M. A conformal
manifold is a pair (M, ) consisting of a differentiable manifold M and a conformal
structure ¢ on it.

Let M and M' be differentiable manifolds. Let ¢’ be a conformal structure
on M'. If f: M — M'is alocal diffeomorphism, then one has an induced conformal
structure f*¢’ on M. Indeed, one defines f*¢' at each point p of M by (f*¢'), =
(T, f)*¢,

Let (M,p) and (M',¢') be conformal manifolds. A local diffeomorphism
f: M — M'is conformal if f*¢' = .

As for conformal structures on real vector spaces, one can equivalently define a
conformal structure on a differentiable manifold M as the proportionality class of
a positive definite quadratic form on its tangent bundle T M.

14. Almost complex and conformal manifolds

In this section we show that, given a 2-dimensional oriented differentiable man-
ifold, there is a bijective correspondence between the set of conformal structures
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on M and the set of almost complex structures on M that are compatible with the
orientation.

Let M be a 2-dimensional orientable differentiable manifold. An almost com-
plex structure ® on M induces a conformal structure ¢ on M. Indeed, ®, is a
complex structure on T, M, for all p € M. This complex structure induces a con-
formal structure ¢, on T, M (see Section 8). It follows from the construction of ¢y,
and using a partition of unity, that ¢ is a conformal structure on M.

Let v be an orientation of M. Then, a conformal structure ¢ on M induces
an almost complex structure ® on M compatible with the orientation. Indeed, the
conformal structure ¢, of T, M induces a complex structure ®, on T, M compatible
with the orientation (see Section 8). It follows from its construction that ® is an
almost complex structure on M compatible with the orientation.

What we have established is a bijective correspondence between the set of
conformal structures on a 2-dimensional oriented differentiable manifold M and
the set of almost complex structures on M compatible with the orientation.

This bijective correspondence is natural. This follows from the following prop-
erty. Let M and M' be 2-dimensional differentiable manifolds and let f: M — M’
be a local diffeomorphism. Let ® be an almost complex structure on M' and ¢’ its
associated conformal structure. Then, f*¢' is the conformal structure associated
to f*®’.

We conclude this section with two other properties which are satisfied by the
bijective correspondence between the set of conformal structures and the set of
complex structures on a given oriented differentiable manifold.

Let (M,®) and (M',®') be 2-dimensional almost complex manifolds. Let ¢
and ¢’ be the induced conformal structures. Let f: M — M’ be a local diffeo-
morphism, orientation-preserving with respect to the orientations induced by the
almost complex structures. Then f is almost complex with respect to ® and @' if
and only if f is conformal with respect to ¢ and ¢’ (see Section 8).

Let M be a 2-dimensional oriented differentiable manifold equipped with an
action of ¥. Let ® be an almost complex structure on M compatible with the
orientation and such that ¢*® = ®. Then, the induced conformal structure ¢
satisfies 0*p = @ (see Section 8). Conversely, if ¢ is a conformal structure on M
such that 0*¢ = ¢, then the induced almost complex structure & on M compatible
with the orientation satisfies o*® = .

15. Realizing a topological type

With all what we have done so far, we are able to prove the converse of Theo-
rem 5.3.

THEOREM 15.1 (Klein [8]). Let g be a nonnegative integer.

1. Let ¢ be an integer satisfying 1 < c < g+1andc= g+ 1 mod 2. Then
there is a dividing real algebraic curve X of genus g such that ¢(X) = c.

2. Let ¢ be an integer satisfying 0 < ¢ < g. Then there is a nondividing real
algebraic curve X of genus g such that ¢(X) = c.

PROOF. We prove both statements at the same time. Let N be the complement
of ¢ disjoint open discs in a compact connected orientable differentiable surface of
genus ¢' = $(g+1—c) (in a compact connected nonorientable differentiable surface
of genus ¢’ = g+1—c, respectively). Then, N is a differentiable surface with bound-
ary. Let M be the double cover of N ramified along its boundary (see the proof
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of Proposition 5.5). Then, M is an orientable compact connected differentiable
surface which comes with an action of X. It follows from topological considerations
as in the proof of Theorem 5.3 that M is of genus g. It is clear that the set of fixed
points M* consists of ¢ components and that M\ M?¥ is nonconnected (connected,
respectively). It thus suffices to show that there is a real algebraic curve X such
that X (C) is equivariantly diffeomorphic to M.

Choose any Riemannian metric (-,-) on M. Let (-, -)' be the Riemannian metric
(-,-) + 0*(-,-). Then, the Riemannian metric {-,-)’ satisfies o*(-,-)' = (,-)', i.e.,
the action of ¥ on M is by isometries. In particular, the conformal structure ¢
induced by (-,-)' satisfies 0*¢p = . Then, according to Section 14, there is an
almost complex structure ® on M compatible with the orientation and such that
o*® = &. It then follows from Section 12 that M carries the structure of a Riemann
surface on which ¥ acts. Applying Section 3, M is equal to the set Y (C) of complex
points of a complex algebraic curve Y on which ¥ acts. By Section 4, there is a real
algebraic curve X such that X¢ is equivariantly isomorphic to Y. In particular,
X (C) is equivariantly diffeomorphic to M. O

16. Connectedness of moduli spaces by elementary techniques

In this section we endow the set R(X) of isomorphism classes of real algebraic
curves of the same topological type as X, with a natural topology. This set may
then be called a moduli space. We show by elementary techniques, i.e., only using
the preceding sections, that the moduli space R(X) is connected.

Let X be a real algebraic curve. Recall that R(X) is the set of isomorphism
classes of real algebraic curves Y of the same topological type as X, i.e.,

R(X)={Y gY)=9(X), ¢(Y) =¢(X), and Y and X o
o are either both dividing or both nondividing

Often we shall not distinguish carefully between a real algebraic curve Y and its
isomorphism class. Let I'(X) be the set of conformal structures on X; i.e., the
elements of I'(X') are conformal structures ¢ on the orientable differentiable surface
X (C) satisfying c*p = ¢. One has a map

p: T(X) — R(X)

defined as follows. Let ¢ be a conformal structure on X. Let ® be the almost
complex structure on X (C) induced by ¢ (see Section 14). Then, according to
Section 14, the almost complex structure ® on X (C) satisfies 0*® = ®. We have
seen in Sections 3 and 4 that, associated to ®, there is a real algebraic curve Y such
that Y (C) and X (C) are equivariantly diffeomorphic. One then defines the map p
by p(p) =Y.

We show that the map p is surjective. Let Y be any real algebraic curve
in R(X). By Proposition 5.5, Y (C) is equivariantly diffeomorphic to X (C). Choose
an equivariant diffeomorphism f from X (C) onto Y(C). Let ¢’ be the conformal
structure on Y (C) induced by the complex analytic structure. Then, ¢ = f*¢'
is a conformal structure in T'(X), and p(p) = Y in R(X). This shows that p is
surjective.

The set ['(X) has a natural topology as a quotient of the space of equivariant
Riemannian metrics on the differentiable manifold X (C). We endow R(X) with
the quotient topology, i.e., the finest topology for which p is continuous. The
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topological space R(X) is called the moduli space of real algebraic curves of the
same topological type as X.

THEOREM 16.1. Let X be a real algebraic curve. Then, the moduli space R(X)
of real algebraic curves of the same topological type as X, is connected.

ProOF. We show that the set I'(X) is path connected. Let ¢ and ¢’ be con-
formal structures on X. Choose representing inner Riemannian metrics (-,-) and
(-,-)', respectively. Replacing (-,-) by (-, ) +*(, ), and similarly for (-,-)’, we may
assume that o*{-,-) = (-,-) and o*(-,-) = (-, ). Define a path from (-,-) to {-,-)' in
the space of Riemannian metrics on X (C) by

<'7 ')t = (1 - t) : <'a ) +t- <'a ')I
for ¢t € [0,1]. Then, for all ¢t € [0, 1], the Riemannian metric (-,-); on X (C) defines a

conformal structure ¢y satisfying o*¢; = ¢¢. Moreover, wg = ¢ and p; = ¢'. This
proves that T'(X) is path connected and, hence, that R(X) is path connected. O

Let g be a nonnegative integer. For ¢ = 1,... ,[%(39 +4)], let X; be a real
algebraic curve of genus g such that X; and X; are of different topological types
whenever i # j. It is natural to endow M, /r with the topology for which the subsets
R(X;),i=1,...,[3(3g+4)], are its connected components. The topological space
M, is called the moduli space of real algebraic curves of genus g. As a consequence
of Proposition 5.5 and Theorems 15.1 and 16.1, one has the following statement
which is part of Theorem 1.2.

THEOREM 16.2. Let g be a nonnegative integer. Then, the number of connected
components of the moduli space My r of real algebraic curves of genus g is equal
to [5(3g +4)]. Two real algebraic curves X andY of genus g belong to the same
connected component if and only if X and Y are of the same topological type.

17. Beltrami differentials

In this section we recall the definition of Beltrami differentials and some related
notions [13].

Let (M, ®q) be a compact 2-dimensional almost complex manifold. Accord-
ing to Section 12, M is the almost complex differentiable structure of a Riemann
surface, which we denote again by M. Denote by 2 the complex line bundle of
complex differential forms on M. Denote by € its conjugate complex line bundle.
Observe that the line bundle Q! ® Q is a normed line bundle if we put

dz
dz
for every local analytic coordinate z on M. One then considers the sup-norm,
denoted by |||, on the global sections of 2~' ® Q. A differentiable Beltrami
differential on M is a differentiable global section u of the vector bundle Q! ® Q
of norm |||, less than 1. The set of differentiable Beltrami differentials on M is
denoted by C?2, (M);.

Let ¢ be any conformal structure on the differentiable manifold M. One as-
sociates with ¢ a differentiable Beltrami differential y as follows. For each local
analytic coordinate z, the differential d,z at a point p of M is a C-linear isomor-
phism from T, M onto C. According to Section 9, one gets a Beltrami coefficient
z,p of @, relative to (®g), and dpz. It is clear from its construction that u, , varies
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differentiably in p. It follows from Section 9 that the local section pu, - % of 07120
does not depend on the local analytic coordinate z. Since M is compact, it defines
a differentiable global section u of 27! ® Q of norm ||p||, strictly less than 1; i.e.,
p is a differentiable Beltrami differential. One calls p the Beltrami differential of
the conformal structure .

Conversely, if u is a differentiable Beltrami differential on M, then one asso-
ciates to p a conformal structure ¢ whose differentiable Beltrami differential is equal
to p. Indeed, in a local analytic coordinate z, u = u. - % for some differentiable
function p,. Then, locally, one defines the conformal structure ¢ as the equivalence
class of |dz + p.dz|?. It is easily checked that ¢ does not depend on the choice of
the local analytic coordinate z.

We conclude that the assignment ¢ — p from the set of conformal structures
on M into the set of differentiable Beltrami differentials on M is a bijection.

Let (M, ®() be a compact 2-dimensional almost complex manifold equipped
with an action of ¥ satisfying 0*® = ®. Then, one has an action of ¥ on the line
bundle Q, which, in turn, induces an action of ¥ on the set of Beltrami differentials
C(Oj 1,1)(M )1 of M. Locally, this action is as follows. One can cover M by equi-

variant local complex analytic coordinates z: U — C. Let u, - % be a Beltrami
differential over the open subset U of M. Then,
dz\ __ dz
7 (Nz dz) RS
It follows from the definition of the Beltrami coefficient associated to a conformal
structure (see Section 9) that the map that associates to a conformal structure on
M its Beltrami differential, is equivariant.

Let (M, ®) be a compact 2-dimensional almost complex differentiable mani-
fold. Let M’ be any differentiable manifold equipped with a conformal structure ¢'.
Let f: M — M' be a local diffeomorphism. Then, one has an induced conformal
structure ¢ = f*¢’ on M. Its Beltrami differential is denoted by uy and is called
the complexr dilation of f. Of course, f is conformal if and only if its complex
dilation py vanishes.

If g is a conformal local diffeomorphism of M’ into a conformal manifold
(M", "), then the maps f and g o f have the same complex dilation. Indeed,
(go f*¢" = f*(g*¢") = f*¢, since g is conformal. It follows that pgor = puf.

One can easily determine the Beltrami differential of the local diffeomorphism f.
Suppose ®' is an almost complex structure on M’ such that @' induces the con-
formal structure ¢’ and such that f is orientation-preserving with respect to the
orientations induced by ®¢ and ®'. Of course, such an almost complex structure
always exists at least locally. Let z' be a local analytic coordinate for M’. Since
frdz' = &Ldz + ZLdz, it follows from Section 10 that, locally,

Lz
1) = gr o
oz

Once again one sees that f is conformal if and only if its complex dilation vanishes.
Let p be the complex dilation of the local diffeomorphism f. One defines the
(global) circular dilation of f as the real number
Ll
1= lplls
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18. Quasiconformal homeomorphisms

In order to have a good Teichmiiller theory, one relaxes the requirement that
the maps between Riemann surfaces be differentiable. If one still wants these maps
to have complex dilations, one is led to the notion of quasiconformal orientation-
preserving homeomorphisms. For the precise definition of these homeomorphisms
one is referred to [13].

For our purposes it will suffice to know that a quasiconformal orientation-
preserving homeomorphism f from an open subset U of C onto an open subset V
of C has complex derivatives % and % almost everywhere in U, i.e., outside a
set of measure 0. The complex derivative % is then nonzero almost everywhere.
Moreover, the quotient

af

0z
is a measurable function on U with |u| < k < 1, almost everywhere, for certain k;
i.e., p is an element of the complex Banach space L>°(U) of norm |||, less than 1.
The composition of two quasiconformal orientation-preserving homeomorphisms
is again quasiconformal. The inverse of a quasiconformal orientation-preserving
homeomorphism is again quasiconformal. Furthermore, if g = 0 in L*°(U), then f
is holomorphic.

That f be quasiconformal does not depend on the choice of the complex ana-
lytic coordinates on U and V. Therefore, it makes sense to speak of quasiconformal
orientation-preserving local homeomorphisms between Riemann surfaces. It fol-
lows that the set of quasiconformal orientation-preserving self-homeomorphisms of
a Riemann surface M is a group. This group is denoted by QT (M). Observe
that orientation-preserving local diffeomorphisms between Riemann surfaces are
quasiconformal.

Let M be a Riemann surface. Consider the measurable essentially bounded
global sections of the line bundle 27! ® Q. These constitute a complex Banach
space L>®(Q ' ® Q) which is denoted by Ly, ;y(M). The open unit ball in this
Banach space is the set of Beltrami differentials on M. This set is denoted by
L2, 1y(M):. Tt contains the set C2; ;) (M), of differentiable Beltrami differentials
on M. If X is a complex algebraic curve, the set of Beltrami differentials on X is
denoted by L, ;(X)1.

Let (M, ®g) and (M', ®') be compact 2-dimensional almost complex manifolds.
We denote again by M and M’ the unique structures of a Riemann surface on M
and M'. Let f be a quasiconformal orientation-preserving local homeomorphism
from M into M'. Then, Equation 1 defines a Beltrami differential ¢ on M. This
associated Beltrami differential is called the complex dilation of f. Clearly, if f
is differentiable, this complex dilation coincides with the formerly defined one (see
Section 17). It follows from what is said above that a quasiconformal orientation-
preserving local homeomorphism between Riemann surfaces is holomorphic if its
complex dilation vanishes.

Let u be the complex dilation of the quasiconformal orientation-preserving local
homeomorphism f. One defines the circular dilation of f as the real number

L Ll
T [l
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Obviously, if f is a local diffeomorphism, this circular dilation coincides with the
previously defined one (see Section 17). Moreover, a quasiconformal orientation-
preserving local homeomorphism between Riemann surfaces is holomorphic if its
circular dilation is equal to 1.

Let M be a Riemann surface equipped with an action of ¥. Then, one has
an action of ¥ on the set L?im)(M )1 of Beltrami differentials. Indeed, the action
of ¥ on M induces an action of ¥ on the line bundle Q. This action, in turn,
induces an action of ¥ by isometries on the complex Banach space L> (27! ® Q) of
L>-sections of Q7! ® Q (compare Section 17). It follows that ¥ acts on the set of
Beltrami differentials on M. The action of ¢ on a Beltrami differential p is denoted
by u°.

Let M be a Riemann surface equipped with an action of X. Let f: M — M’ be
a quasiconformal orientation-preserving local homeomorphism of Riemann surfaces.
Consider the conjugate map f° from M7 into (M')?. Since M is equipped with an
action of ¥, one canonically identifies M with M. Then, the complex dilation of
f7 is equal to the conjugate of the complex dilation of f, i.e.,

(2) fe = KF-
19. Complex Teichmiiller spaces

In this section we recall definitions and some facts about complex Teichmiiller
spaces (see [13] for more details).

Let g be a nonnegative integer, and let X be a reference complex algebraic curve
of genus g. Then, one defines the moduli space of X—which is, for the moment,
only a set—as the set of isomorphism classes of complex algebraic curves Y such
that there is a homeomorphism between Y (C) and X (C). In fact, R(X) is nothing
but the set of isomorphism classes of complex algebraic curves of genus g, and is
also denoted by R, or My, in the literature. Here, it will be convenient, however,
to denote this set by R(X).

A marked complex algebraic curve modeled on X is a pair (Y, f) consisting of
a complex algebraic curve Y and a quasiconformal orientation-preserving homeo-
morphism f: X(C) - Y(C). Let M (X) be the set of marked complex algebraic
curves modeled on X. One has a canonical map

p: M(X) — R(X)
which associates to a marked curve (Y, f) the isomorphism class of Y. Since for
every complex algebraic curve Y of genus g, the oriented differentiable manifold
Y (C) is orientation-preservingly diffeomorphic to X (C), the map p is surjective.

Let (Y, f) and (Z, h) be marked complex algebraic curves modeled on X. Then,
(Y, f) and (Z,h) are said to be equivalent as marked curves if the map h! o
f:Y(C) —» Z(C) is conformal. This is denoted by (Y, f) ~ (Z,h). Obviously, the
relation ~ on M (X) is an equivalence relation. The quotient M (X)/~ is denoted
by M(X). The quotient map is denoted by 7. Of course, the map p induces a map

p: M(X) = R(X).

Let Q1 (X) be the group of quasiconformal orientation-preserving self-homeo-
morphisms of X(C). The group Q@ (X) acts on the set M (X) of marked curves.
Indeed, if (Y, f) € ]/\/I\(X) and a € QT(X), then one defines (Y, f) -a by (Y, f o a).
From the definition of the equivalence relation ~ on M (X) it readily follows that
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one has an induced action of @*(X) on M(X). The map p then is the quotient of
M (X) by the action of Q*(X).

Let Q7 (X) be the subgroup of @*(X) consisting of those self-homeomorphisms
of X(C) that are homotopic to the identity. The Teichmiiller space of the complex
algebraic curve X—which is also, for the moment, only a set—is the quotient
M(X)/Q¢(X), and is denoted by T'(X). One has a quotient map

T: M(X) — T(X).

By definition, two marked curves (Y, f) and (Z,h) in M (X) have the same image
in T(X) if and only if there is a self-homeomorphism a of X(C) in Q¢ (X) such
that ho(foa)~! is conformal. The latter condition is equivalent to the existence of
an orientation-preserving conformal homeomorphism ¢: Y (C) — Z(C) such that
the maps h and ¢ o f are homotopic.

Since the map p is the quotient of M (X) by the full group Q+(X), p factorizes
through 7 and gives a map

p:T(X) — R(X).

One has the following commutative diagram.

M(X) —— R(X)

M(X)—"——T(X)

Observe that Q7 (X) is a normal subgroup of the group @+ (X). The quotient
Q1 (X)/Qd (X) is the modular group of X, denoted by Mod(X). Of course, the
action of @*(X) on M(X) induces an action of the modular group Mod(X) on the
Teichmiiller space T'(X). Clearly, the map p' is the quotient of T'(X) by the action
of the group Mod(X).

In order to construct a structure of a complex analytic manifold on T'(X), one
considers Beltrami differentials on X, i.e., Beltrami differentials on X (C). Recall
that the set of Beltrami differentials on X is the open unit ball L2, ;) (X): in

the Banach space of L®-sections of the line bundle Q' ® Q. It follows from the
preceding sections that the map p that associates to an element (Y, f) of M(X)
the complex dilation py of f is a bijection from M (X) onto LE’ELI)(X )1. Hence,

1

one has induced maps 7/ = 7o pu ™! and p" = p’ o 7', so that one has the following

commutative diagram:

M(X) _r, R(X)

I

M(X) —= T(X) L (X

N,

Now, the set L((Dim)(X )1 of Beltrami differentials, being an open subset of a com-
plex Banach space, is naturally a complex Banach manifold. Moreover, y being a
bijection, one has an induced action of the group @ (X) on L (X)1. Obviously,

the map 7' is the quotient map for the action of the subgroup Qg (X). The action
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of QT (X) on L2, 1)(X)1 turns out to be holomorphic, from which one concludes
that the quotient, i.e., T'(X), is a complex Banach manifold, and that the modular
group Mod(X) acts holomorphically on T'(X). In fact, T(X) is finite-dimensional,
i.e., T(X) is a complex analytic manifold, and the modular group acts properly
discontinuously on T'(X). Then, the quotient R(X) = T(X)/Mod(X) gets the
structure of a normal complex analytic variety [2].

Observe that, if we have an action of ¥ on X (C), then ¥ acts on the whole
diagram above. Indeed, the action of o on R(X) sends a complex algebraic curve
Y to its complex conjugate Y. It sends a marked complex algebraic curve (Y, f)
modeled on X onto the marked curve (Y7, f?) which is also modeled on X, since
X7 = X, canonically. This action is easily checked to induce actions on M (X) and
T(X). The maps p, p, p', ® and 7 are Y-equivariant. According to Equation 2,
the map p is Y-equivariant with respect to the canonical action of ¥ on the set of
Beltrami differentials. Then, the maps 7' and p' are -equivariant, too.

20. Real Teichmiiller spaces

In this section we recall the definition of the real Teichmiiller space of a real
algebraic curve and related notions.

Let g be a nonnegative integer, and let X be a reference real algebraic curve of
genus g. Recall from Section 16 that the set R(X) is the set of isomorphism classes
of real algebraic curves Y having the same topological type as X. Equivalently,
one can define R(X) as the set of isomorphism classes of real algebraic curves Y
such that there is an equivariant quasiconformal homeomorphism between Y (C)
and X (C) (cf. Proposition 5.5). We consider R(X), for the moment, only as a set.
The moduli problem is to find a “natural” geometric structure on R(X).

A marked real algebraic curve modeled on X is a pair (Y, f) consisting of a
real algebraic curve Y and an equivariant quasiconformal orientation-preserving
homeomorphism f: X(C) — Y (C). Let M(X) be the set of marked real algebraic
curves modeled on X. One has a canonical map

p: M(X) — R(X)

which associates to a marked curve (Y, f) the isomorphism class of Y. Obviously,
p is surjective.

Let (Y, f) and (Z,h) be marked real algebraic curves modeled on X. Then,
(Y, f) and (Z,h) are said to be equivalent as marked curves if the map h~! o
f:Y(C) —» Z(C) is conformal. This is denoted by (Y, f) ~ (Z,h). Obviously, the
relation ~ on M (X) is an equivalence relation. The quotient M (X)/~ is denoted
by M(X). The quotient map is denoted by 7. It is clear that the map p induces a
map

p: M(X) — R(X).

Consider the canonical map from M (X) into M (X¢). It is clear that this map
is injective. Moreover, its image is the set of fixed points M (X¢)* for the action of
Y on M(Xc¢). Indeed, any marked real algebraic curve gives rise to a fixed point
in M(Xc¢) for the action of ¥. Conversely, let (Y, f) be the equivalence class of
a marked complex algebraic curve modeled on X¢ satisfying (Y, f)7 = (Y, f) in
M (Xc). This means that the homeomorphism f? o f~! from Y (C) onto Y (C) is
conformal. But then,

(frof 7o (fTof ) =Ffo(f) tofroft=id
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That is, f° o f~! is an isomorphism of Y onto Y defining a real structure on Y.
With respect to this real structure, the homeomorphism f is ¥-equivariant, for

(f7ofHof=f.

This shows that the image of M (X) is equal to M (X¢)*.
Another way to see that the image of M (X) in M (X¢) is equal to the set of
fixed points M (X¢) is by using the equivariance of the complex dilation map

7 M(Xc) — L((xll,l)(Xc)l.

Indeed, if (Y, f) is a fixed point for the action of ¥ on M (X¢), then its complex
dilation g = py is equivariant. According to [13, Section 1.3.2], there is then an
almost complex structure on the topological space X (C), denoted by X(C),, such
that the identity id: X(C) — X(C), has complex dilation p. It follows that f
considered as a map from X(C), into Y(C) is holomorphic. Hence, denoting by
X, the complex algebraic curve whose underlying Riemann surface is X (C),, the
marked curve (X, id) represents the same element of M (X¢). Since p is a fixed
point for the action of X, the action of ¥ on X (C), is an action of ¥ on a Riemann
surface. Therefore, X, comes, in fact, from a real algebraic curve X ;Iw and the
identity map id from X(C) onto X/, (C) is ¥-equivariant, i.e., (X},,id) is a marked
curve modeled on the real curve X whose image in M (X¢) is equal to (Y] f).

Let @*(X) be the group of X-equivariant quasiconformal orientation-preserving
self-homeomorphisms of X (C). The group QT (X) acts on the set M (X) of marked
curves. Indeed, if (Y, f) € J/\/I\(X) and a € Q1 (X), then one defines (Y, f) - a by
(Y, f o a). Tt follows immediately from the definition of the equivalence relation ~
on M (X) that one has an induced action of @ (X) on M (X). The map p then is
the quotient of M (X) by the action of QT (X).

Let Q¢ (X) be the subgroup of @+ (X) consisting of those self-homeomorphisms
of X(C) that are homotopic to the identity. The Teichmiiller space of the real
algebraic curve X—which is, for the time being, merely a set—is the quotient
M(X)/Q¢(X), and is denoted by T'(X). One has a quotient map

T: M(X) — T(X).

By definition, two marked curves (Y, f) and (Z, h) in M (X) have the same image in
T(X) if and only if there is a self-homeomorphism a of X (C) in QF (X) such that
ho(foa) ! is conformal. The latter condition is equivalent to the existence of a
Y-equivariant conformal orientation-preserving homeomorphism ¢: Y(C) — Z(C)
such that the maps h and ¢ o f are homotopic.

Since p is the quotient of M (X) by the full group Q+(X), the map p factorizes
through 7 and gives a map

' T(X) — R(X).

Denote by Lf°, ;)(X)1 the set of Beltrami differentials of L{2, ;)(Xc) that are
Y-invariant. Since the complex dilation map from M (Xc) into L2, ;) (Xc)1 is a
Y-equivariant bijection, and since M (X) can naturally be identified with M (X¢)*,

one has an induced bijection, again denoted by p, from M (X) onto L‘(’il,l)(X )1-

1

As in the complex case, one then puts 7/ = Topu ™! and p" = p’' o 7', and one has
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the following commutative diagram:

M(X) —2— R(X)

M(X) —"—=T(X) +—— L, ;,(X)

N,

Observe that Q7 (X) is a normal subgroup of the group Q*(X). The quotient
Q1 (X)/Qd (X) is the modular group of the real algebraic curve X, denoted by
Mod(X). Of course, the action of QT (X) on M(X) induces an action of the
modular group Mod(X) on the Teichmiiller space T'(X). Clearly, the map p' is the
quotient of T'(X) by the action of the group Mod(X).

Since L(()im)(X )1 is a real Banach manifold and QF (X) acts analytically, one
might show directly that the quotient, the real Teichmiiller space T(X), is a real Ba-
nach manifold of finite dimension, i.e., a real analytic manifold. However, we shall
prove the latter fact in a more or less indirect way using Teichmiiller’s Theorem.

21. Teichmiiller’s Theorem

We recall Teichmiiller’s Theorem [13, Theorem 2.6.4], and apply it to derive
results on real Teichmiiller spaces.

Let X be a complex algebraic curve. Let (Y, f) be a marked complex algebraic
curve modeled on X. Teichmiiller’s Theorem states that there is a unique extremal
quasiconformal orientation-preserving homeomorphism fr from X(C) onto Y (C)
such that fr is homotopic to f, i.e., (Y, f) and (Y, fr) represent the same point in
T(X). By “extremal” is meant that the circular dilation v(fr) of fr is minimal,
ie.,

v(fr) = inf{y(h) | h: X(C) — Y(C), homotopic to f }.
In fact, the statement of Teichmiiller’s Theorem is more precise [13, Section 2.6.4].

Let A2(X) be the complex vector space of global quadratic differentials on X,
ie.,

A%(X) =T(X,0%?).
One makes A%2(X) into a normed complex vector space by defining

lel= [ 1o
X(©

for ¢ € A%2(X). Denote by A?(X); the open unit ball in A%2(X) with respect to
this norm. Let ¢ € A%(X);. Then, one defines a Beltrami differential pur(p) on X.
With respect to a local analytic coordinate system z, ¢ is of the form ¢(z) dz2.
Then, in this same local coordinate system,

p(z
lo(2)|

pr(p) = llell -

N
& &

if ¢ # 0; otherwise ur(p) = 0. Let
HT/C: AZ(X)]_ — T(X)

be the map defined by Hr/c(¢) = 7'(ur(p)). Then, it essentially follows from
Teichmiiller’s Theorem that Hy/c is a homeomorphism [13, Section 2.6.6]. In
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particular, if (Y, f) represents an element of T(X), there is a unique ¢ € A%(X);
such that Hr/c(p) = (Y, f) in T(X). In fact, ¢ is such that ur(p) is equal to the
complex dilation of the extremal Teichmiiller map fr in the homotopy class of f.

Now, the idea of the construction of the structure of a real analytic manifold
on T(X) is to show that T(X) can be identified with T'(X¢)* for a real algebraic
curve X. This is the statement of the following result.

THEOREM 21.1 (Earle [4]). Let X be a real algebraic curve. Then the canonical
map from T(X) into T(X¢) is a bijection onto T(Xc)>.

PROOF (SEPPALA [16]). Denote by A2(X) the real vector space of global qua-
dratic differentials on X, i.e.,

A%(X) =T(X,0%?%).

In fact, A%(X) is the set of fixed points for the action of ¥ on A?(X¢). Hence,
A%(X) is a normed real vector space. Denote its open unit ball by A?(X);. It
is clear from its construction that the Beltrami differential pr(p) is X-invariant
for ¢ € A%(X)y, i.e., ur(p) is an element of L?im)(X)l- Denote again by pr
the map from A%(X); into L?im)(X)l which associates ur(¢) to ¢. Denote by
Hr g the composition 7/ o g from A?(X); into T'(X). Then, one has the following
commutative diagram:

Hrc

Az(Xc)l T Lc(xiLl) (XC)I TI—) T(Xc)

T I

A2(X)y —— L2 1y (X1 —T(X)

By Teichmiiller’s Theorem, Hr,c is a ¥-equivariant homeomorphism. Hence, its
restriction to the set of fixed points A%(X¢)} is a homeomorphism onto T'(X¢)*.
Since A2(Xc)} = A%(X)1, one has that the canonical map from 7'(X) into T'(Xc)
has as image T(X¢)*. In order to see that this map is injective, it suffices to show
that Hp /g is surjective.

Let (Y, f) represent an element of T'(X). Let fr be the extremal Teichmiiller
map in the homotopy class of f. Then, there is a unique ¢ in A%2(X¢); such that
the complex dilation of fr is equal to pur(v). By uniqueness of fr, the map fr is
Y-equivariant. Therefore, its complex dilation is ¥-invariant, i.e., ¢ is in 4%(X);
and Hr/r(p) = (Y, f) in T'(X). This proves that Hr/g is surjective. O

Since T'(X¢)* is a real analytic manifold, one obtains, by transport of structure,
the structure of a real analytic manifold on 7'(X). In particular, T'(X) is a topolog-
ical space. It then follows that the map Hr /g is a homeomorphism. Therefore, one
has the following real version of Teichmiiller’s Theorem, which is essentially due to
Kravetz [10].

THEOREM 21.2. Let X be a real algebraic curve. Then, the map Hy/r from
A%(X); into T(X) is a homeomorphism. O

Let X be a real algebraic curve and let g be its genus. By Riemann-Roch, the
dimension of the real vector space A%(X) is equal to 0 if g = 0; to 1 if g = 1; and
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to 3g — 3 if g > 2. Therefore, the real Teichmiiller space T'(X) is a real analytic
manifold of dimension 0 if g =0; 1if g =1; and 3g — 3 if g > 2.

22. Moduli of real algebraic curves

Recall the following well known fact on quotients of real analytic manifolds by
discontinuous group actions. Let M be a real analytic manifold. Let G be a group
acting properly discontinuously on M. Then, the quotient M /G is a semianalytic
variety (cf. [6] for details).

Let X be a real algebraic curve and let g be its genus. Since the modular
group Mod(X¢) of the complex algebraic curve X¢ acts properly discontinuously
on T(Xc¢), its subgroup Mod(X) also acts properly discontinuously on T(X¢). In
particular, Mod(X) acts properly discontinuously on T'(X). Therefore, the quotient
T(X)/Mod(X) is a connected semianalytic variety. But this quotient is nothing
but the moduli space R(X) of real algebraic curves having the same topological
type as X. Therefore, one has the following result.

THEOREM 22.1. Let X be a real algebraic curve. Then, the moduli space R(X)
of real algebraic curves having the same topological type as X is a connected semi-
analytic variety.

One easily verifies that the topology on R(X) induced by its semianalytic struc-
ture coincides with the topology on R(X) that was defined in Section 16.

For i = 1,...,[3(3g + 4)], let X; be a real algebraic curve of genus g such
that X; and X are of different topological type whenever i # j. The set M, of
isomorphism classes of all real algebraic curves of genus g acquires the structure of a
semianalytic variety for which the semianalytic varieties R(X;), i =1,...,[3(3g +
4)], are its connected components.

We show that the structure of a semianalytic variety on R(X) is natural. First,
we need to explain what is meant by natural. For this we need to introduce the
notion of an analytic family of real algebraic curves.

Let M be a real analytic manifold. Denote by R the sheaf of real analytic
functions on M. A family of real algebraic curves of genus g over M is a triple
(C,U,p), often simply denoted by C, where

1. U is an open covering of M,

2. C(U) is a curve over the ring R(U) of real analytic functions on U for all
U € U;ie., C(U)is a proper and flat scheme over R(U) of finite presentation
whose geometric fibers are algebraic curves of genus g (see [5] for details),
and

3. ¢ constitutes gluing data for the curves C(U), i.e., for all U,V € U we have
isomorphisms

pYv,u: C(U) QR(U) R(U n V) — C(V) QR(V) R(U n V)

of curves over the ring R(UNV') such that py,r = ide) and ow,v ocpv,u =
ewy over UNV NW, for al U, V,W € U.
If C is a family of real algebraic curves of genus g over a real analytic manifold M,
then for every p € M, the fiber C, is a real algebraic curve defined up to a specified
isomorphism. Indeed, choose an open subset U € U such that p € U; then C, is
the real algebraic curve C(U) ®z () R, where R is considered as an R(U)-algebra
via the map of evaluation at p. One should think of the family C as a collection
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of real algebraic curves parametrized analytically by the real analytic manifold M.
We say that the family of real algebraic curves C over M of genus g is a family of
real algebraic curves having the same topological type as X, if for every p € M the
fiber C, is a real algebraic curve of the same topological type as X.

To say that the structure of a semianalytic variety on R(X) is natural is to say
the following.

THEOREM 22.2. Let X be a real algebraic curve and let g be its genus. Let
M be a real analytic manifold and let C be an analytic family of real algebraic
curves of genus g over M having the same topological type as X. Then, the map
f: M — R(X) defined by f(p) = C, is analytic.

In order to prove this result, one shows that a similar universal property holds
for the real Teichmiiller space T(X). Let M be a real analytic manifold. An
analytic family of marked real algebraic curves modeled on X over M is an analytic
family (C,U, ¢) of real algebraic curves of genus g over M equipped with continuous
families of real marking maps

fu: C(U)(C) - U x X(C);

i.e., fy is a ¥-equivariant homeomorphism and its restriction to each fiber C,(C)
is a quasiconformal orientation-preserving homeomorphism onto {p} x X(C). Of
course, on overlaps U NV, the maps fy and fy are supposed to coincide.

One has the following important example of an analytic family of marked real
algebraic curves modeled on X. Recall [13, Section 5.4.3] that one has a universal
analytic family of complex algebraic curves A over the complex analytic Teich-
miiller space T'(X¢). We show that the restriction of At to T'(X) is an analytic
family of marked real algebraic curves. Indeed, it follows from the universal prop-
erty of A¢ that there is an action of ¥ on the total space of A¢. The restriction X
of Xc to T'(X) then is an analytic family of marked real algebraic curves modeled
on X. In fact, this family is the universal family of marked real algebraic curves
modeled on X.

THEOREM 22.3. Let X be a real algebraic curve. Let C be an analytic family of
marked real algebraic curves modeled on X over a real manifold M. Let f: M —
T(X) be the map defined by letting f(p) be the element of T(X) that is represented
by the real algebraic curve Cp, modeled on X. Then, f is analytic.

PrOOF. It suffices to prove the statement locally, i.e., we may suppose that the
covering relative to which the family C is defined is trivial. Since the curve C(M)
is of finite presentation, there are

1. a complex analytic manifold N endowed with an action of ¥, and
2. a family of marked complex algebraic curves D over N modeled on Xc,
endowed with an action of ¥ over the action of ¥ on N,

such that N* is isomorphic to M and the restriction of D to N* is isomorphic to C.
One then applies the universal property of X¢ to conclude the proof. O

The preceding result states that the real Teichmiiller space is a coarse moduli
space. In fact, one can prove that the real Teichmiiller space T(X) is even a fine
moduli space if the genus of X is at least 2, but that is of no use in this paper.
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PrOOF OF THEOREM 22.2. Theorem 22.2 follows from Theorem 22.3, since
every analytic family of real algebraic curves over a real analytic manifold is locally
a family of marked real algebraic curves. O

As is explained in the Introduction, the property of R(X) as stated in Theo-
rem 22.2 does not uniquely determine the semianalytic structure on R(X). The
following result characterizes the semianalytic structure among all semianalytic
structures on R(X) satisfying the statement of Theorem 22.2.

THEOREM 22.4. Let X be a real algebraic curve. Let R(X)' be any semianalytic
structure on the set R(X) having the following property. If M is a real analytic
manifold and C is an analytic family of real algebraic curves of the same topological
type as X, then the map f: M — R(X)' defined by f(p) = Cp is analytic. Then,
the identity map id: R(X) — R(X)' is analytic.

PRrOOF. We apply the hypothesis to the universal family of marked real alge-
braic curves X over T(X) modeled on X. The map f: T(X) — R(X)' defined
by letting f(p) be the isomorphism class of the real algebraic curve X}, is analytic.
Since foa = f for any a € Mod(X), the map f factorizes through the quotient
map p': T'(X) — R(X). This resulting map is, obviously, equal to the identity map
and is analytic by definition of the quotient T'(X)/Mod(X). O

PROOF OF THEOREM 1.2. Fori=1,...,[3(3g+4)], let X; be a real algebraic
curve of genus g such that X; and X; are of different topological types whenever
i # j. We have endowed M,/ with the semianalytic structure for which the
semianalytic varieties R(X;) are its connected components.

Let M be a real analytic manifold and let C be an analytic family of real
algebraic curves of genus g over M. Let f: M — Mgy p be the map defined by
letting f(p) be the isomorphism class of the fiber C, for any p € M. We have to
show that f is analytic. For ¢ = 1,... ,[%(39 + 4)], let M; be the subset of M
consisting of those p € M for which the fiber C, is of the same topological type as
X;. Then, each subset M; is open and closed in M. Therefore, each M; is a real
analytic submanifold of M and M is the disjoint union of all M;. It follows from
Theorem 22.2 that the restriction of f to M; is an analytic map into R(X;). Hence,
the map f is analytic. This proves statement 1.

Let M ; /R be another semianalytic structure on the set M, satisfying state-
ment 1. We have to show that the identity map id: My/p — M é /R is analytic. Let

T be the disjoint union of the real analytic manifolds T'(X;), i = 1,..., [%(3g +4)].
Let & be the universal real algebraic curve over T'. Since M é /R satisfies statement 1,
the map f: T — M;/R defined by f(p) = A), for p € M, is analytic. As in the
proof of Theorem 22.4, the map f induces an analytic map from Mg into M ; /R>
and this map is the identity. This proves statement 2.

The other statements were proved in Section 16. O
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