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Abstract

Let X be a real cubic hypersurface in P". Let C' be the pseudo-
hyperplane of X, i.e., C is the irreducible global real analytic branch
of the real analytic variety X (R) such that the homology class [C]
is nonzero in H,_;(P*(R),Z/2Z). Let L be the set of real linear
subspaces L of P" of dimension n —2 contained in X such that L(R) C
C'. We show that, under certain conditions on X, there is a group law
on the set £. It is determined by L + L'+ L"” = 0 in £ if and only if
there is a real hyperplane H in P™ such that H- X = L+ L'+ L". We
also study the case when these conditions on X are not satisfied.
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1 INTRODUCTION

The group law on the set of rational points of a cubic curve does not admit a
generalization to cubic hypersurfaces [4]. That is, the set of rational points
of a cubic hypersurface does not have a group law for which colinear points
have zero sum. The idea of the present paper is that the higher dimensional
analogue of a rational point of a cubic curve should not be a rational point
of a cubic hypersurface, but should be a rational linear subspace of P" of
dimension n — 2 that is contained in a cubic hypersurface.

Acknowledgement. [ am grateful to Louis Mahé for discussions on
cubic hypersurfaces and group laws.

2 PSEUDO-HYPERPLANES OF REAL HYPERSURFACES

Let n be a natural integer satisfying n > 2. Let X C IP” be a real hypersur-
face, i.e., X is defined by a nonconstant homogeneous real polynomial. Note



that we do not assume X to be reduced, irreducible or smooth. The set of
real points X(R) of X is a real analytic subvariety of P*(R). Let C be an irre-
ducible global real analytic branch of X(R). Then C' is a compact connected
real analytic subvariety of P*(R). Its dimension is at most n — 1. By [1], C
realizes a Z/2Z-homology class [C] in H,_;(P"(R),Z/2Z). This homology
class vanishes if dim(C) < n—1. We say that C' is a pseudo-hyperplane of X
if [C] # 0. In particular, the dimension of a pseudo-hyperplane of X is equal
ton — 1. If n = 2, a pseudo-hyperplane is called a pseudo-line. If n = 3, a
pseudo-hyperplane is called a pseudo-plane.

Proposition 1. Let n and d be natural integers. Let X be a real hypersurface
of P* of degree d. Then, the number of pseudo-hyperplanes of X, when
counted with multiplicities, is congruent to d (mod 2).

Proof. We may assume that X is reduced. Denote by [X(R)] the homology
class of X(R) in H,_;(P*(R),Z/2Z). One has [X(R)] = d[P*"}(R)]. Let L

be a general real projective line in P". Then,
[X(R)] [L(R)] = d[P"(R)] - [L(R)] = d

in Z/2Z. But the intersection number [X(R)] - [L(R)] is equal to the number
of pseudo-hyperplanes of X. Therefore, the statement follows. O

Proposition 2. Let n and d be natural integers. Let X be a real hypersurface
of P™ of degree d. Then, X has at most d pseudo-hyperplanes, when counted
with multiplicities.

Proof. Let L. C P™ be a general real projective line. Let (' be a pseudo-
hyperplane of X. Since [C] # 0 and [L(R)] # 0, the homological intersection
product [C]-[L(R)]is nonzero. In particular, the subsets C'and L(R) of P*(R)
intersect each other. Therefore, any pseudo-hyperplane of X intersects L(R).
Hence, the number of pseudo-hyperplanes of X, counted with multiplicities,
is not greater than the degree of the intersection product X - L. Since the
latter degree is equal to d, the statement follows. O

Proposition 3. Let n and d be natural integers. Let X be a real hypersurface
of P of degree d. Then, X has exactly d pseudo-hyperplanes if and only if X
is the scheme-theoretic union of d real hyperplanes.

Proof. Suppose that X is the scheme-theoretic union of d real hyperplanes.
Then it is clear that X has exactly d pseudo-hyperplanes, when counted with
multiplicities.

Conversely, suppose that X has exactly d pseudo-hyperplanes, when
counted with multiplicities. We show that X is a scheme-theoretic union
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of real hyperplanes. Clearly, one may assume that X is reduced. Let C' be a
pseudo-hyperplane of X. Since dim(C') = n — 1, there is a smooth point P
of X that belongs to C'. We show that the projective tangent space Tp X
of X at P is contained in X. It will follow that X is the scheme-theoretic
union of real hyperplanes.

Let L be a real projective line in TpX passing through P. We show
that L is contained in X. Suppose that L. € X. Then the intersection
product L - X contains P with multiplicity > 2. Moreover, L(R) intersects
each of the d — 1 pseudo-hyperplanes C’ of X that are distinct from C. It
follows that deg(L - X) > 2+ (d — 1) = d + 1, contradiction. O

From Propositions 1, 2 and 3 one deduces the following consequence.

Corollary 4. Let X C P be an irreducible real cubic hypersurface. Then X
has exactly 1 pseudo-hyperplane. O

3 REAL CUBIC HYPERSURFACES

Let X C P” be an irreducible real cubic hypersurface. Then, by Corol-
lary 4 above, X has exactly one pseudo-hyperplane. Let C' be the pseudo-
hyperplane of X. Let £ be the set of real linear subspaces L of P” of dimen-
sion n — 2 that are contained in X and that satisfy L(R) C C. Note that the
last condition on L is superfluous if C' is entirely contained in the smooth
locus of X. To put it otherwise, if all points of C' are smooth points of X
then £ is nothing but the set of real linear subspaces of P” of dimension n —2
that are contained in X.

The set £ is well understood. If n = 2, the set £ is equal to the pseudo-
line of X. If n = 3, the set L is finite if X is smooth or if X is singular with
isolated rational singularities [3, p. 66]. More generally, for arbitrary n > 2,
let X C P” have rational singularities in codimension > 2, i.e., the singular
locus of X has codimension > 2 and any general section of X by a real 4-
dimensional linear subspace of P”* has only rational singularities. Then £ is
finite. This follows easily from [3].

Let Z be the subset of £ x £ consisting of all pairs (L, L) such that there
is either no real hyperplane H with H - X > 2L, or there are several such
hyperplanes. Equivalently, Z is the subset of the diagonal A of £ x £ whose
complement in A consists of all pairs (L, L) such that there is exactly 1 real

hyperplane H in P"* with H - X > 2L.

Proposition 5. Suppose that C' is homeomorphic to P**(R). There is a
unique partial composition law

ot LxL\Z — L
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determined by L" = Lo L' if and only if there is a real hyperplane H in P"
such that H- X =L+ L'+ L".

Proof. Let L, L' € £ with (L,L") ¢ Z. The homology classes [L(R)] and
[L'(R)] are nonzero in H,_5(C,Z/27). Since C is homeomorphic to P*}(R),
the intersection product [L(R)]-[L'(R)] is nonzero. It follows that the linear
subspaces L and L' intersect in a real linear subspace of P" of dimension >
n—3. If L # L', the dimension of the intersection is equal to n — 3. Hence,
if L # L', there is a unique real hyperplane H in P” such that H - X >
L+ L' If L = L' then there is also a unique real hyperplane H in P" such
that H - X > L + L' since (L, L") & Z.

Now, H - X is a real cubic hypersurface in the real projective space H. It
has at least 2 pseudo-hyperplanes, when counted with multiplicities. From
Propositions 1 and 3 it follows that there is a unique real linear subspace L”
of P" of dimension n — 2 such that H- X = L+ L'+ L”. Since Since [H(R)] -
[C]# 0 and [L(R)] 4 [L'(R)]=0in H,_2(C(R),Z/2Z), one has L"(R) C C,
ie, L" e L. O

It will be convenient, as in the case of cubic curves, to have an element O €
L such that there exist a unique real hyperplane Hy in P* with Hy- X = 30.
Therefore, we consider the following conditions on X:

1. X is smooth in codimension 1,
2. C'is homeomorphic to P*7!(R), and
3. there is a real hyperplane Hy in P” such that Hy - X = 30 in Div(X).

There are lots of real cubic hypersurfaces satisfying conditions 1, 2 and
3: smooth real cubic curves in P? satisfy the conditions 1, and, whenever
an irreducible real cubic hypersurface in P satisfies the conditions, then a
projective cone over it in P™*! also satisfies the conditions 1, 2 and 3. And,
these are not the only ones [3].

Note, however, that a real cubic hypersurface X satisfying conditions 1,
2 and 3 is necessarily singular if n > 3. Indeed, after a change of coordinates,
one may assume that Hy is given by the equation Xy = 0, and that O is the
linear subspace of P™ defined by the equations Xy = 0 and X; = 0. Then,
X is defined by a homogeneous polynomial of the form X? + XoF, where F
is a real quadratic form in Xg,...,X,. The closed subscheme of X defined
by the equations Xo = 0, X; = 0 and F' = 0 is contained in the singular
locus of X. If n > 3 then this closed subscheme is nonempty. Therefore, X
is singular if n > 3.



Lemma 6. Let X C P” be an irreducible real cubic hypersurface satisfying
conditions 1, 2 and 3 above. Then O € L and (0,0) & Z.

Proof. Since Hy- X = 30, O is a real linear subspace of P” of dimension n—2.
Since n — 2 > 0, the set of real points O(R) of O is nonempty. Since O(R) C
X(R) and O(R) is irreducible, there is an irreducible global real analytic
branch C" of X(R) such that O(R) C C’. Since X is smooth in codimension 1,
O is not contained in the singular locus of X. It follows that O(R) contains a
smooth point of X. In particular, C’ is a real analytic variety of dimension n—
1. Suppose that [C'] = 0 then also [Ho(R)]-[C'] = [O(R)] = 0. But [O(R)] #
0, contradiction. Therefore, [C'] # 0, i.e., C" is a pseudo-hyperplane of X. It
follows from Corollary 4 that €' = C and O € L.

Since X is smooth in codimension 1, the hyperplane Hj is the unique real

hyperplane satisfying Ho - X > 20. Hence, (0,0) ¢ Z. O

From now on, suppose that X C P” is an irreducible real cubic hyper-
surface satisfying conditions 1, 2 and 3 above. Define a partial composition
law & on L,

O LXL\NZ—L

by L& L' = Oo(LolL')forall (L,L") € £L*\ Z. Note that this is well defined
by Lemma 6. Define also a map

o: L—L

by 6L = O o L for all L € £. Note again that this well defined.

Let Pic(X) be the Picard group of X. Since X is smooth in codimension 1,
the group Pic(X) is the group of linear equivalence classes of divisors on X [2].
Define a map

@: L — Pic(X)

by ¢(L) = cl(L — O), for all L € L, where cl denotes the linear equivalence
class.

Theorem 7. Let X C P” be an trreducible real cubic hypersurface satisfying
conditions 1, 2 and 3 above. Then the map ¢ s injective. Moreover, for

all (L, L") € L*\ Z one has
p(L® L) =¢(L)+p(L').
And, for all L € L one has

p(oL) = —¢(L).



Proof. Let L, L' € L such that o(L) = ¢(L'). Then the invertible sheaves
O(L) and O(L') on X are isomorphic. Let P C P" be a general real linear
subspace of dimension 2. Then, £ = P N X is a smooth real cubic curve,
PN L and PN L are real points of F, and the invertible sheaves O(P N L)
and O(P N L") on E are isomorphic. It follows (cf. [5]) that PN L = PN L.
Since P is general, one has L = L’. This proves that ¢ is injective.

Let L. € £. By Proposition 5, there is a real hyperplane H of P” such
that

H-X=0+4+L+cL.

Then

0

div<g> —(O+L+6L)—30=(L—0)+ (6L —O0).

It follows that o(SL) = —¢(L).
Similarly, if (L, L") € £L*\ Z, then (L & L') = ¢(L) + ¢(L'). O

Corollary 8. Let X C P” be an irreducible real cubic hypersurface satisfying
conditions 1, 2 and 3 above. Suppose that for each L € L there is a real
hyperplane H in P* such that H - X > 2L. Then (L,&,5,0) is an abelian
group and the map ¢ is an isomorphism from L onto a subgroup of Pic(X).

O

If n = 2, then X is a smooth real cubic curve, C' is the pseudo-line of X,
the set £ is equal to C', and Z = (). Therefore, Corollary 8 reconstructs the
classical group structure on C' [5]. This is not surprising since we used in the
proof of Theorem 7 the classical fact that the map ¢ is injectiveif n = 2. More
generally, if X C P” is a real projective cone over a nonsingular real cubic
curve I, then there is an obvious bijection between £ and the real pseudoline
of E, and, again, Z = (). Therefore, £ is a group that is isomorphic to the
group structure on the pseudo-line of £. More interesting cases are the cases
where X has rational singularities in codimension > 2.

Let Z[L] be the free abelian group generated by the elements of £. Let H
be the subgroup of Z[L] generated by the elements

Lel —L—1,
for (L, L") € £?\ Z, and the elements
oL+ L,

for L € L, and the element O. Let GG be the quotient group Z|[L]/H.



Proposition 9. Let X C P" be an irreducible real cubic hypersurface satis-
fying conditions 1, 2 and 3 above. Then

G=LU{mL|(L,L) € Z and m > 2}.

Proof. Let R be the right hand-side of the equation. Let g be an element
of G. We may assume that g = Zle L;, where L; € Lfori=1,... . We
show that one can reduce ¢ successively to get in the end g € R.

If £ <1 then we are done. Suppose therefore that £ > 2. If (L1, Ls) € Z
then put L, , = L,y & Ly. One has g = Zf: L., where L. = L; for 1 =
1,....¢=2. Continuing in this way, one has in the end either g € L or g = mL
for some L € £ with (L,L) € Z and m > 2, i.e., g € R. O

Corollary 10. Let X C P” be an irreducible real cubic hypersurface satisfy-
ing conditions 1, 2 and 3 above. Suppose that X has rational singularities in
codimension > 2. Then rank(G) < 1.

Proof. Since X has rational singularities in codimension > 2, the set L is
finite [3]. By Proposition 9, the Q-vector space Q ® G is a union of finitely
many l-dimensional subspaces. Hence, dim(Q ® ) < 1. Since G is a Z-
module of finite type, rank(G) < 1. O

Corollary 11. Let X C P” be an irreducible real cubic hypersurface satisfy-
ing conditions 1, 2 and 3 above. Suppose that X has rational singularities in
codimension > 2. Then the map p: L — Pic(X) induces a morphism

b1 G —s Pic(X).
The image of ¢ is a subgroup of Pic(X) of rank < 1. O

Let X C P” be an irreducible real cubic hypersurface satisfying conditions
1, 2 and 3 above, and having rational singularities in codimension > 2. One
of the following 3 conditions hold:

L 9(G) = ¢(£),
2. Y(G) # ¢(L) and P(G) is finite, or
3. ¥(G) is not finite.

The first case occurs when, for each L € L, there is a real hyperplane H in P"
such that H-X > 2L (see Proposition 9). Explicit examples of real cubic hy-
persurfaces X having this property can be easily constructed using [3, p. 66].
It would be interesting to construct real cubic hypersurfaces X for which one
of the other conditions hold. It would also be interesting to determine the
group ¥((G) explicitly in each of the above three cases.
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