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Abstract. Let X be a rational nonsingular compact connected real
algebraic surface. Denote by Diffalg(X) the group of algebraic diffeo-
morphisms of X into itself. The group Diffalg(X) acts diagonally on X

n,
for any natural integer n. We show that this action is transitive, for all n.

As an application we give a new and simpler proof of the fact that
two rational nonsingular compact connected real algebraic surfaces are
algebraically diffeomorphic if and only if they are homeomorphic as topo-
logical surfaces.
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1. Introduction

Let X be a nonsingular compact connected real algebraic manifold, i.e.,
X is a compact connected submanifold of R

n defined by real polynomial
equations, where n is some natural integer. We study the group of algebraic
diffeomorphisms of X into itself. Let us make precise what we mean by an
algebraic diffeomorphism.

An algebraic map ϕ of X into itself is a map of the form

(1.1) ϕ(x) =

(
p1(x)

q1(x)
, . . . ,

pn(x)

qn(x)

)

where p1, . . . , pn, q1, . . . , qn are real polynomials in the variables x1, . . . , xn,
with qi(x) 6= 0 for any x ∈ X. An algebraic map from X into itself is
also called a regular map [2]. Note that an algebraic map is necessarily of
class C∞. An algebraic map ϕ is an algebraic diffeomorphism if ϕ is alge-
braic, bijective and ϕ−1 is algebraic. An algebraic diffeomorphism from X
into itself is also called a biregular map [2]. We denote by Diffalg(X) the
group of algebraic diffeomorphism of X into itself.

For a general real algebraic manifold, the group Diffalg(X) tends to be
rather small. For example, if X admits a complexification X of general
type then Diffalg(X) is finite. Indeed, any algebraic diffeomorphism of X
into itself is the restriction to X of a birational automorphism of X . The
group of birational automorphisms of X is known to be finite [7]. Therefore,
Diffalg(X) is finite for such real algebraic manifolds.

In the current paper, we study the group Diffalg(X) when X is a compact
connected real algebraic surface, i.e., a compact connected real algebraic
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manifold of dimension 2. By what is said above, the group of algebraic
diffeomorphisms of such a surface is most interesting when the Kodaira
dimension of X is equal to −∞, and, in particular, when X is geometrically
rational. By a result of Comessatti, a connected geometrically rational real
surface is rational (see Theorem IV of [4] and the remarks thereafter, or
[8, Corollary VI.6.5]). Therefore, we will concentrate our attention to the
group Diffalg(X) when X is a rational compact connected real algebraic
surface.

Recall that a real algebraic surface X is rational if there are a nonempty
Zariski open subset U of R

2, and a nonempty Zariski open subset V of X,
such that U and V are algebraically diffeomorphic. In particular, this
means that X contains a nonempty Zariski open subset V that admits a
parametrization by real rational functions in two variables.

Examples of rational real algebraic surfaces are the following:

• the unit sphere S2 defined by the equation x2 + y2 + z2 = 1 in R
3,

• the real algebraic torus S1 × S1, where S1 is the unit circle defined
by the equation x2 + y2 = 1 in R

2,
• the real projective plane P

2(R) (refer to [2, Theorem 3.4.4] for an
explicit realization of P

2(R) as a real algebraic surface), and
• any real algebraic surface obtained from one of the above ones by

repeatedly blowing up a real point.

The following conjecture has attracted our attention.

Conjecture 1.2 ([1, Conjecture 1.4]). Let X be a rational nonsingular com-

pact connected real algebraic surface. Let n be a natural integer. Then the

group Diffalg(X) acts n-transitively on X.

The conjecture seems known to be true only in the case where X is alge-
braically diffeomorphic to S1 × S1:

Theorem 1.3 ([1, Theorem 1.3]). The group Diffalg(S
1×S1) acts n-transi-

tively on S1 × S1, for any natural integer n. �

The object of the paper is to prove Conjecture 1.2 for all rational surfaces:

Theorem 1.4. The group Diffalg(X) acts n-transitively on X, whenever X
is a rational nonsingular compact connected real algebraic surface, and n is

a natural integer.

Our proof goes as follows. We first prove n-transitivity of Diffalg(S
2) (see

Theorem 2.3). For this, we need a large class of algebraic diffeomorphisms
of S2 into itself. Lemma 2.1 constructs such a large class. Once n-transitivity
of Diffalg(S

2) is established, we prove n-transitivity of Diffalg(X), for any
other rational surface X, by the following argument.

If X is algebraically diffeomorphic to S1 × S1 then the n-transitivity has
been proved in [1, Theorem 1.3]. Therefore, we may assume that X is
not algebraically diffeomorphic to S1 × S1. It follows from the Minimal
Model Program for real algebraic surfaces, due to János Kollár [5, 6], that
X is isomorphic to a blowing-up of S2 in m points, for some natural inte-
ger m (see Theorems 4.1 and 4.3 for precise statements). The n-transitivity
of Diffalg(X) will then be proved by induction on m.
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Theorem 1.4 shows that the group of algebraic diffeomorphisms of a ra-
tional real algebraic surface is big. It would, therefore, be particularly inter-
esting to study the dynamics of algebraic diffeomorphisms of rational real
surfaces, as is done for K3-surfaces in [3], for example.

As an application of Theorem 1.4, we present in Section 5 a simplified
proof of the following result.

Theorem 1.5 ([1, Theorem 1.2]). Let X and Y be rational nonsingular

compact connected real algebraic surfaces. Then the following statements

are equivalent.

(1) The real algebraic surfaces X and Y are algebraically diffeomorphic.

(2) The topological surfaces X and Y are homeomorphic.

Indeed, the Minimal Model Program for real algebraic surfaces and the
n-transitivity of Diffalg(P

2(R)) suffice to deduce that result (see the remark
following Theorem 1.2 of [1]).

2. n-Transitivity of Diffalg(S
2)

We need to slightly extend the notion of an algebraic map between real
algebraic manifolds. Let X and Y be real algebraic submanifolds of R

m and
R

n, respectively. Let A be any subset of X. An algebraic map from A into
Y is a map ϕ as in (1.1), where p1, . . . , pn, q1, . . . , qn are real polynomials in
the variables x1, . . . , xm, with qi(x) 6= 0 for any x ∈ A. To put it otherwise,
a map ϕ from A into Y is algebraic if there is a Zariski open subset U
of X containing A such that ϕ is the restriction of an algebraic map from U
into Y .

We will consider algebraic maps from a subsetA ofX into Y , in the special
case where X is algebraically diffeomorphic to the real algebraic line R, the
subset A of X is a closed interval, and Y is algebraically diffeomorphic to
the real algebraic group SO2(R).

Denote by S2 the 2-dimensional sphere defined in R
3 by

x2 + y2 + z2 = 1.

Lemma 2.1. Let L be a line through the origin of R
3 and denote by I ⊂

L the closed interval whose boundary is L ∩ S2. Denote by L⊥ the plane

orthogonal to L containing the origin. Let f : I → SO(L⊥) be an algebraic

map. Define ϕf : S2 → S2 by

ϕf (z, x) = (f(x)z, x)

where (z, x) ∈ (L⊥⊕L)∩S2. Then ϕf is an algebraic diffeomorphism of S2.

Proof. Identifying R
2 with C, we may assume that S2 ⊂ C × R is given by

the equation |z|2 + x2 = 1, and L is the line {0} × R. Then L⊥ = C × {0}
and SO(L⊥) = S1. The map ϕf is an algebraic map from S2 into itself.

Let f be the complex conjugate of f , i.e. ∀x ∈ I, f(x) = f(x). We have
ϕf ◦ ϕf = ϕf ◦ ϕf = id. Therefore ϕf is an algebraic diffeomorphism

of S2. �

Lemma 2.2. Let x1, . . . , xn be n distinct points of the closed interval [−1, 1],
and let α1, . . . , αn be elements of SO2(R). Then there is an algebraic map

f : [−1, 1] → SO2(R) such that f(xj) = αj for j = 1, . . . , n.
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Proof. Since SO2(R) is algebraically diffeomorphic to the unit circle S1, it
suffices to prove the statement for S1 instead of SO2(R). Let P be a point
of S1 distinct from α1, . . . , αn. Since S1 \ {P} is algebraically diffeomorphic
to R, it suffices, finally, to prove the statement for R instead of SO2(R). The
latter statement is an easy consequence of Lagrange polynomial interpola-
tion. �

Theorem 2.3. Let n be a natural integer. The group Diffalg(S
2) acts n-

transitively on S2.

Proof. We will need the following terminology. Let W be a point of S2, let
L be the line in R

3 passing through W and the origin. The intersection of
S2 with any plane in R

3 that is orthogonal to L is called a parallel of S2

with respect to W .
Let P1, . . . , Pn be n distinct points of S2, and let Q1, . . . , Qn be n distinct

points of S2. We need to show that there is an algebraic diffeomorphism ϕ
from S2 into itself such that ϕ(Pj) = Qj , for all j.

Up to a projective linear automorphism of P
3(R) fixing S2, we may assume

that all the points P1, . . . , Pn and Q1, . . . , Qn are in a sufficiently small
neighborhood of the north pole N := (0, 0, 1) of S2. Indeed, we may assume
that none of the points is contained in a small spherical disk D centered
at N . Then the images of the points by the inversion with respect to the
boundary of D are contained in D.

We can choose two points W and W ′ of S2 in the xy-plane such that the
angleWOW ′ is equal to π/2 and such that the following property holds. Any
parallel with respect to W contains at most one of the points P1, . . . , Pn,
and any parallel with respect to W ′ contains at most one of Q1, . . . , Qn.
Denote by Γj the parallel with respect to W that contains Pj , and by Γ′

j

the one with respect to W ′ that contains Qj .
Since the disk D has been chosen sufficiently small, Γj ∩ Γ′

j is nonempty
for all j = 1, . . . , n. Let Rj be one of the intersection points of Γj and
Γ′

j (see Figure 1). It is now sufficient to show that there is an algebraic

diffeomorphism ϕ of S2 such that ϕ(Pj) = Rj.
Let again L be the line in R

3 passing through W and the origin. Denote
by I ⊂ L the closed interval whose boundary is L∩S2. Let xj be the unique

element of I such that Γj = (xj + L⊥) ∩ S2. Let αj ∈ SO(L⊥) be such that
αj(Pj − xj) = Rj − xj . According to Lemma 2.2, there is an algebraic map

f : I → SO(L⊥) such that f(xj) = αj . Let ϕ := ϕf as in Lemma 2.1. By
construction, ϕ(Pj) = Rj , for all j = 1, . . . , n. �

3. Contractible curves

Let Y be a real algebraic surface and let P be a nonsingular point of Y .
We denote by BP (Y ) the blow-up of Y at P .

Definition 3.1. Let X be a projective real algebraic surface. Let C be a

real algebraic curve contained in X. We say that C is contractible if there

is a projective real algebraic surface Y , a nonsingular point P ∈ Y , and an

algebraic diffeomorphism ϕ : BP (Y ) → X such that ϕ−1(C) is equal to the

exceptional curve of BP (Y ) over P . By abuse of language, we will then also

say that Y is obtained from X by contracting C to a point.
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Figure 1. The sphere S2 with the parallels Γj and Γ′
j.

If a curve C is contractible, then C is nonsingular, irreducible and rational.
Moreover, C is contained in the set of nonsingular points ofX. In this paper,
we will only consider contractible curves in nonsingular surfaces.

Theorem 3.2. Let X be a nonsingular projective real algebraic surface. Let

C be a nonsingular rational irreducible real algebraic curve contained in X.

Assume that

(1) X admits a nonsingular projective complexification X in which the

Zariski closure C of C is nonsingular and such that the self-inter-

section C2 is greater than or equal to −1, and

(2) the normal bundle of C in X is nontrivial.

Then C is contractible. Moreover, the surface Y obtained from X by con-

tracting C to a point is nonsingular.

Proof. Let X be a nonsingular projective complexification of X such that
the Zariski closure C of C in X is nonsingular and C2 ≥ −1. Since C is
rational, C is diffeomorphic to a circle. Since the normal bundle of C in
X is nontrivial, the degree of I|C is odd, where I is the ideal sheaf of C
in X . It follows that the self-intersection of C is odd. Let k be an integer
such that C2 = 2k − 1. Since C2 ≥ −1, one has k ≥ 0. On C, choose k

pairs of complex conjugate points P1, P1, . . . , P2k, P2k. Let X̃ be the blow-

up of X at these points. The surface X̃ is again a nonsingular projective

complexification of X. Moreover, the strict transform C̃ of C in X̃ is a
nonsingular rational algebraic curve defined over R whose self-intersection
is equal to −1. Then there is a nonsingular projective algebraic surface
Y defined over R, a nonsingular real point P ∈ Y, and an isomorphism

Φ: BP (Y) → X̃ such that Φ−1(C̃) is equal to the exceptional curve of BP (Y)

over P . To put it otherwise, the surface Y defined over R is obtained from X̃
by contracting C to a point. It follows that the set of real points Y of



ALGEBRAIC DIFFEOMORPHISMS OF REAL RATIONAL SURFACES 6

Y is a nonsingular projective real algebraic surface obtained from X by
contracting C to point. It is clear that Y is nonsingular. �

4. n-Transitivity of Diffalg(X)

We reformulate a result of [1] and adapt it to our purposes:

Theorem 4.1 ([1, Theorem 3.1]). Let X be a rational nonsingular compact

connected real algebraic surface. Then,

(1) X is either algebraically diffeomorphic to S1 × S1, or

(2) X is algebraically diffeomorphic to a real algebraic surface obtained

from S2 by successively blowing up. �

It is in 4.1 that Kollár’s Minimal Model Program for real algebraic surfaces
is used.

IfX is a rational surface algebraically diffeomorphic to a successive blowing-
up of S2, as in Theorem 4.1 above, then one can get rid of the adjective
”successive” by using the following statement (compare [1, Lemma 4.1] and
how it is used to prove [1, Lemma 4.3]).

Lemma 4.2. Let P ∈ S2 and let C ⊆ S2 be an euclidean circle in S2

containing P . Let BP (S2) be the blowing-up of S2 at P , and let E be the

exceptional curve of BP (S2) over P . Denote by C̃ ⊂ BP (S2) the strict

transform of C. Then there is an algebraic diffeomorphism ϕ of BP (S2)

into itself such that ϕ(E) = C̃.

Proof. The statement immediately follows from the fact that BP (S2) is alge-

braically diffeomorphic to the real projective plane P
2(R), and that E and C̃

are real projective lines on P
2(R). �

The following sharpened version of Theorem 4.1 follows:

Theorem 4.3. Let X be a rational nonsingular compact connected real al-

gebraic surface. Then,

(1) X is either algebraically diffeomorphic to S1 × S1, or

(2) there are distinct points R1, . . . , Rm of S2 such that X is algebraically

diffeomorphic to the real algebraic surface obtained from S2 by blow-

ing up R1, . . . , Rm. �

Proof of Theorem 1.4. LetX be a rational surface. By Theorem 4.3, X is al-
gebraically diffeomorphic to S1×S1 or to the blow-up of S2 at a finite number
of distinct points R1, . . . , Rm. If X is algebraically diffeomorphic to S1 ×S1

then Diffalg(X) acts n-transitively by [1, Theorem 1.3]. Therefore, we may
assume that X is algebraically diffeomorphic to the blow-up BR1,...,Rm

(S2)
of S2 at R1, . . . , Rm. We will show that Diffalg(X) acts n-transitively on X
for all n by induction on m.

If m = 0, then Diffalg(X) is n-transitive, for all n, by Theorem 2.3. Let
m > 0, and let X be BR1,...,Rm

(S2). Let P1, . . . , Pn and Q1, . . . , Qn be two
n-tuples of points of X where Pj 6= Pk and Qj 6= Qk whenever j 6= k. We
want to show that there is an algebraic diffeomorphism ϕ of X such that
ϕ(Pj) = Qj for all j.
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We identify P
2(R) with BRm

(S2) via an algebraic diffeomorphism. We
may consider R1, . . . Rm−1 as points of P

2(R) and the surfaceX is the surface
BR1,...,Rm−1

(P2(R)). Let π : X → P
2(R) be the blowing-up morphism. Let L

be a line in P
2(R) that does not contain any of the points Rk, π(Pj), π(Qj).

The inverse image L̃ of L in X is a real algebraic curve in X. We show

that L̃ is contractible.
Since π is an algebraic diffeomorphism from a neighborhood of L̃ inX onto

a neighborhood of L in P
2(R), the inverse image L̃ is a nonsingular rational

real algebraic curve contained in X. Moreover, since the normal bundle of L

in P
2(R) is nontrivial, the normal bundle of L̃ in X is nontrivial.

A complexification of P
2(R) is the projective plane P

2. Therefore, a com-
plexification of X is the algebraic variety over R obtained from P

2 by blow-
ing up the real points R1, . . . , Rm of P

2. Denote this complexification by X .
Let L be the Zariski closure of L in P

2. Of course, L is a nonsingular al-
gebraic curve over R whose self-intersection is equal to 1. Denote by π̃ the

blowing-up morphism from X into P
2, and by L̃ the inverse image of L by π̃.

Since π̃ is an isomorphism over a neighborhood of L, the algebraic curve L̃

over R is a nonsingular complexification of L̃, and its self-intersection is
equal to 1.

It follows from Theorem 3.2 that L̃ is contractible. Let Y be the resulting

surface and let ρ : X → Y be the morphism that contracts L̃ to a point P ,
see Definition 3.1. Let σ : P

2(R) → S2 be the morphism that contracts the
line L of P

2(R) to a point. Then π induces a morphism τ : Y → S2, i.e., one
has the following diagram:

X

π

��

ρ

##
G

G

G

G

G

G

G

G

G

Y

τ

��

P
2(R)

σ

""
E

E

E

E

E

E

E

E

S2

The morphism τ is the blow-up of S2 at the points R1, . . . , Rm−1. Since

the real algebraic curve L̃ does not contain any of the points Pj or Qj

of X, the points ρ(P1), . . . , ρ(Pn) are distinct, and the same holds for the
points ρ(Q1), . . . , ρ(Qn). Moreover, P 6= σ(Pj) and P 6= σ(Qj) for all j.
By the induction hypothesis, the group Diffalg(Y ) acts (n + 1)-transitively
on Y . Therefore, there is an algebraic diffeomorphism ψ of Y such that
ψ(ρ(Pj)) = ρ(Qj) and ψ(P ) = P . Since X is the blow-up of Y at P ,
the map ψ induces an algebraic diffeomorphism ϕ of X with the required
property. �
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5. Classification of rational real algebraic surfaces

Proof of Theorem 1.5. Let X and Y be a rational nonsingular compact con-
nected real algebraic surfaces. Of course, if X and Y are algebraically diffeo-
morphic then X and Y are homeomorphic. In order to prove the converse,
suppose that X and Y are homeomorphic. We show that there is an alge-
braic diffeomorphism from X onto Y .

By Theorem 4.3, we may assume that X and Y are not homeomorphic
to S1 × S1. Then, again by Theorem 4.3, X and Y are both algebraically
diffeomorphic to a real algebraic surface obtained from S2 by blowing up a
finite number of distinct points. Hence, there are distinct points P1, . . . , Pn

of S2 and distinct points Q1, . . . , Qm of S2 such that

X ∼= BP1,...,Pn
(S2) and Y ∼= BQ1,...,Qm

(S2).

Since X and Y are homeomorphic, m = n. By Theorem 2.3, there is an
algebraic diffeomorphism ϕ from S2 into S2 such that ϕ(Pi) = Qi for all i.
It follows that ϕ induces an algebraic diffeomorphism from X onto Y . �
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