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Abstract. Let M be a connected sum of finitely many lens spaces, and let N

be a connected sum of finitely many copies of S1
× S2. We show that there is

a uniruled algebraic variety X such that the connected sum M#N of M and
N is diffeomorphic to a connected component of the set of real points X(

�
)

of X. In particular, any finite connected sum of lens spaces is diffeomorphic
to a real component of a uniruled algebraic variety.
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1. Introduction

The Theorem of Nash-Tognoli states that any differentiable manifold is diffeo-
morphic to a real component of an algebraic variety. More precisely, for any com-
pact connected differentiable manifold M , there is a nonsingular projective and
geometrically irreducible real algebraic variety X , such that M is diffeomorphic to
a connected component of the set of real points X(R) of X . The question then nat-
urally rises as to which differentiable manifolds actually occur as real components
of algebraic varieties of a given class. For example, one may wonder which differ-
entiable manifolds are diffeomorphic to a real component of an algebraic variety of
Kodaira dimension −∞. That specific question is the question we will address in
the current paper for algebraic varieties of dimension 3.

In dimension ≤ 3, an algebraic variety X has Kodaira dimension −∞ if and only
if it is uniruled, i.e., if and only if there is a dominant rational map Y × P1

99K

X , where Y is a real algebraic variety of dimension dim(X) − 1. Therefore, the
question we study is the question as to which differentiable manifolds occur as
a real component of a uniruled algebraic variety of dimension 3. In dimension
0 and 1, that question has a trivial answer. In dimension 2, the answer is due to
Commessatti.

Theorem (Comessatti 1914 [1]). Let X be a uniruled real algebraic surface. Then,

a connected component of X(R) is either nonorientable, or diffeomorphic to the

sphere S2 or the torus S1×S1. Conversely, a compact connected differentiable sur-

face that is either nonorientable or diffeomorphic to S2 or S1×S1, is diffeomorphic

to a real component of a uniruled real algebraic surface.

We have deliberately adapted the statement of Commessatti’s Theorem for the
purpose of the current paper. Commessatti stated the result for real surfaces that
are geometrically rational, i.e., whose complexification is a complex rational surface.
The more general statement above easily follows from that fact.
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In dimension 3, much progress has been made, due to Kollár, in classifying the
differentiable manifolds that are diffeomorphic to a real component of a uniruled
algebraic variety.

Theorem (Kollár 1998 [7, Th. 6.6]). Let X be a uniruled real algebraic variety of

dimension 3 such that X(R) is orientable. Let M be a connected component of

X(R). Then, M is diffeomorphic to one of the following manifolds:

(1) a Seifert manifold,

(2) a connected sum of finitely many lens spaces,

(3) a locally trivial torus bundle over S1, or doubly covered by such a bundle,

(4) a manifold belonging to an a priori given finite list of exceptions, or

(5) a manifold obtained from one of the above by taking the connected sum with

a finite number of copies of P3(R) and a finite number of copies of S1×S2.

Recall that a Seifert manifold is a manifold admitting a differentiable foliation
by circles. A lens space is a manifold diffeomorphic to a quotient of the 3-sphere S3

by the action of a cyclic group. In case the set of real points of a uniruled algebraic
variety is allowed not to be orientable, the results of Kollár are less precise due
to many technical difficulties, but see [6, Theorem 8.3]. In order to complete the
classification in the orientable case, Kollár proposed the following conjectures.

Conjecture (Kollár 1998 [7, Conj. 6.7]). (1) Let M be an orientable Seifert

manifold. Then there is a uniruled algebraic variety X such that M is

diffeomorphic to a connected component of X(R).
(2) Let M be a connected sum of lens spaces. Then there is a uniruled algebraic

variety X such that M is diffeomorphic to a connected component of X(R).
(3) Let M be a locally trivial torus bundle over S1 which is not a Seifert man-

ifold. Then M is not diffeomorphic to a real component of a uniruled alge-

braic variety X.

(4) Let M be a manifold belonging to the a priori given list of exceptional man-

ifolds. Then M is not diffeomorphic to a real component of a uniruled

algebraic variety X.

Let us also mention the following result of Eliashberg and Viterbo (unpublished).

Theorem (Eliashberg, Viterbo). Let X be a uniruled real algebraic variety. Let

M be a connected component of X(R). Then M is not hyperbolic.

In an earlier paper, we proved Conjecture (1) above, i.e., that any orientable
Seifert manifold M is diffeomorphic to a connected component of the set of real
points of a uniruled real algebraic variety X [3, Th. 1.1]. Unfortunately, we do
not know whether X(R) is orientable, in general. Indeed, the uniruled variety X
we constructed may have more real components than the one that is diffeomorphic
toM , and we are not able to control the orientability of such additional components.

Recently, we realized that the methods used to prove Th. 1.1 of [3] can be
generalized in order to obtain a similar statement concerning connected sums of lens
spaces. In fact, we prove, in the current paper a slightly more general, statement.

To the best of our knowledge, Kollár did not conjecture which manifolds, that
are connected sums of one of the above manifolds (1–4) with a finite number of
copies of P3(R) and a finite number of copies of S1 × S2, are realizable as a real
component of a uniruled algebraic variety. Of course, if M is realizable as a real
component of a uniruled algebraic variety, the connected sum M#P3(R) is also
realizable. But for M#(S1 × S2), the question seems to be more delicate.

The main result of the paper is the following.

Theorem 1.1. Let N1 be an oriented connected sum of finitely many lens spaces,

and let N2 be an oriented connected sum of finitely many copies of S1 ×S2. Let M
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be the connected sum N1#N2. Then, there is a uniruled real algebraic variety X
such that M is diffeomorphic to a connected component of X(R).

Corollary 1.2. Let M be a connected sum of finitely many lens spaces. Then, there

is a uniruled real algebraic variety X such that M is diffeomorphic to a connected

component of X(R).

This proves Conjecture (2) above. Conjectures (3) and (4) remain open. The
proof of Theorem 1.1 has two parts.

Firstly, developing an idea of Kollár in [6], we prove the existence of a particular
map f : M → S over a differentiable surface with boundary (see Theorem 2.6).
Then along the same lines as in [3], we prove that we can suppose the existence of

a finite ramified topological covering π : S̃ → S such that the fiber product

f̃ : M̃ = M ×S S̃ −→ S̃

is a locally trivial differentiable circle bundle over the interior of S̃ (Theorem 2.7).

Moreover, the covering f̃ is Galois, the Galois group G acting with fixed point-freely
on M̃ .

Secondly, we prove that there are

(1) a real algebraic surface S̃′, endowed with a real algebraic action of G,

(2) a real algebraic plane bundle (V, p) on S̃′, also endowed with a real algebraic
action of G,

(3) a G-invariant real algebraic norm ν on V , and

(4) a G-invariant real algebraic function r on S̃′ with regular value 0,

such that the submanifold {r ≥ 0} of S̃′ is equivariantly diffeomorphic to S̃, and

the submanifold N = {ν2 = r ◦ p} of V is equivariantly diffeomorphic to M̃ . Since
G acts fixed point-freely on the real algebraic variety N , the quotient N/G is a
connected component of a real algebraic variety. Since M is diffeomorphic to N/G,
it follows that M is a real component of a uniruled algebraic variety.

As one can notice, the proof of our main result, uses a generalization of the
method of proof of Theorem 1.1 of [3]. Several people have pointed out to us
work of Dovermann, Masuda and Suh [2], that would have been useful in realizing
algebraically the equivariant set-up above. However, the results of Doverman et al.

apply only to semi-free actions of a group, whereas here, the action of G is, more
or less, arbitrary, in any case, not necessarily semi-free. Therefore, as a by-product
of our methods, we can mention the following generalization of [2, Th. B] in the
case of a certain finite group actions on a real plane bundle over a surface.

Theorem 1.3. Let S be an orientable compact connected surface without boundary

and let G be a finite group acting on S. Let (V, p) be an orientable differentiable

real plane bundle over S, endowed with an action of G over the action on S such

that

(1) S contains only finitely many fixed points, and

(2) G acts by orientable diffeomorphisms on V .

Then there is a nonsingular real algebraic surface T endowed with a real algebraic

action of G, a strongly algebraic real plane bundle (W, q) over T , endowed with a

real algebraic action of G over the action on T , such that there are G-equivariant

diffeomorphisms φ : S → T and ψ : V → W making the following diagram commu-

tative.

V → W
↓ ↓
S → T
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For a proof, we refer to the paper [3], where this statement has not been stated
explicitly.

Acknowledgement. The authors are grateful to S. Akbulut, J. Bochnak, H. King,
W. Kucharz for bringing to the attention the above result of Dovermann et al. The
authors thank K. H. Dovermann, J. Kollàr, O. Viro for helpful discussions and
A. Marin for his interest.

2. Connected sums of lens spaces

Let S1 ×D2 be the solid torus where S1 is the unit circle {u ∈ C | |u| = 1} and
D2 is the closed unit disc {z ∈ C, |z| ≤ 1}. A Seifert fibration of the solid torus is
a differentiable map of the form

fp,q : S1 ×D2 → D2 , (u, z) 7→ uqzp ,

where p and q are natural integers, with p 6= 0 and gcd(p, q) = 1. Let M be
a 3-manifold. A Seifert fibration of M is a differentiable map f from M into a
differentiable surface S having the following property. Every point P ∈ S has a
closed neighborhood U such that the restriction of f to f−1(U) is diffeomorphic to
a Seifert fibration of the solid torus. Sometimes, nonorientable local models are also
allowed in the literature, e.g. [8]. For our purposes, we do not need to include them
in the definition of a Seifert fibration, since the manifolds we study are orientable.

Let C2 be the collar defined by C2 = {w ∈ C | 1 ≤ |w| < 2}. Let P be the
differentiable 3-manifold defined by

P = {((w, z) ∈ C2 × C | |z|2 = |w| − 1}.

Let ω : P → C2 be the projection defined by ω(w, z) = w. It is clear that ω is
a differentiable map, that ω is a trivial circle bundle over the interior of C2, and
that ω is a diffeomorphism over the boundary of C2.

Definition 2.1. Let f : M → S be a differentiable map from a 3-manifold M
without boundary into a differentiable surface S with boundary. The map f is a

Werther map if

(1) the restriction of f over the interior of S is a Seifert fibration, and

(2) the restriction of f over an open neighborhood of each boundary component

of S is diffeomorphic to ω.

Remarks 2.2. (1) Let M be a Seifert manifold which is not a connected sum
of lens spaces, then for all Werther maps M → S, we have ∂S = ∅, see [6,
3.7].

(2) Let M be a 3-manifold. A Werther map M → S is a Seifert fibration if and
only if ∂S = ∅.

For an integer n, let µn be the multiplicative subgroup of C? of the n-th roots
of unity. We agree that µ0 = {1}. Let p and q be relatively prime integers. The
lens space Lp,q is the quotient of the 3-sphere S3 = {(w, z) ∈ C2 | |w|2 + |z|2 = 1}
by the action of µpq defined by

ξ · (w, z) = (ξqw, ξpz),

for all ξ ∈ µpq and (w, z) ∈ S3. A lens space is a differentiable manifold diffeomor-
phic to a manifold of the form Lp,q. It is clear that a lens space is an orientable
compact connected differentiable manifold of dimension 3.

Lemma 2.3. Let p and q be relatively prime integers. There is a Werther map

f : Lp,q −→ D2.
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Proof. Let g : S3 −→ D2 be the map g(w, z) = wp for all (w, z) ∈ S3. Since g is
constant on µpq-orbits, the map g induces a differentiable map f : Lp,q −→ D2. It
is easy to check that f is a Werther map. �

Lemma 2.4. Let A2 be the closed annulus {z ∈ C | 1 ≤ |z| ≤ 2}. There is Werther

map f : S1 × S2 −→ A2.

Proof. Let S2 be the 2-sphere in C×R defined by |z|2+t2 = 1. Let f : S1×S2 −→ A2

be the map defined by f(w, z, t) = 1

2
(t+3)w. It is easy to check that f is a Werther

map. �

Lemma 2.5. Let f1 : M1 → S1 and f2 : M2 → S2 be two Werther maps where M1

and M2 are oriented 3-manifolds without boundaries. Suppose that the boundaries

∂S1 and ∂S2 are nonempty. Then there is a differentiable surface S with nonempty

boundary and a Werther map

f : M1#M2 −→ S .

Proof. Let γi ⊂ Si, i ∈ {1, 2} be a simple path having its end points in the same
boundary component of Si, and whose interior is contained in the interior of Si.
One may assume that γi bounds a closed disc Di in Si, over the interior of which

fi is a trivial circle bundle. Let Ti = Si \Di and let Ni = Mi \ f
−1

i (Di). By

construction, f−1

i (γi) is a 2-sphere in Mi bounded by the 3-ball f−1

i (Di). The

restriction of f1 to f−1

1
(D1) is diffeomorphic to f−1

2
(D2). In particular, we have

an orientation reversing diffeomorphism between f−1

1
(γ1) and f−1

2
(γ2) compatible

with a diffeomorphism between γ1 and γ2. Therefore, the connected sum M of
M1 and M2 is diffeomorphic to the manifold obtained from gluing N1 and N2 along
the orientation reversing diffeomorphism between f−1

1
(γ1) and f−1

2
(γ2). Let S be

the manifold obtained from gluing T1 and T2 along the diffeomorphism between
γ1 and γ2. One has an induced differentiable map f : M → S that is a Werther
map. �

Theorem 2.6. Let N1 be an oriented connected sum of finitely many lens spaces,

and let N2 be an oriented connected sum of finitely many copies of S1 ×S2. Let M
be the connected sum N1#N2. Then, there is a compact connected differentiable

surface S with boundary and a Werther map f : M → S.

Proof. The statement follows from Lemmas 2.3, 2.4 and 2.5. �

Theorem 2.7. Let N1 be an oriented connected sum of finitely many lens spaces,

and let N2 be an oriented connected sum of finitely many copies of S1 ×S2. Let M
be the connected sum N1#N2. Then there is a Werther map f : M → S of M over

a compact connected surface S, and a finite ramified topological covering π : S̃ → S
such that

(1) S̃ is orientable,

(2) π is unramified over the boundary of S,

(3) π is Galois, i.e., π is a quotient map for the group of automorphisms of S̃/S,

(4) the induced action of G on the fiber product M̃ = S̃×SM is fixed point-free,

(5) the induced fibration f̃ : M̃ → S̃ is a locally trivial circle bundle over the

interior of S̃.

Proof. If M is a Seifert manifold, the statement follows from Theorem 1.1 of [3].
If M is not Seifert, then by Theorem 2.6, there is a Werther map f : M → S of M
over a compact connected differentiable surface S with nonempty boundary. The
statement then follows as in the proof of Theorem 1.1 cited above. �
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3. Algebraic models

Proof of Theorem 1.1. Let f : M → S be a Werther map of M as in Theorem 2.7.
Let S′ be a compact connected differentiable surface without boundary contain-
ing S, such that the complement of S in S ′ is a disjoint union of open discs. Sim-
ilarly, there is such a surface S̃′ containing S̃. The ramified covering π : S̃ → S of
Theorem 2.7 extends to a ramified covering π′ : S̃′ → S′, introducing, if necessary,
at most one ramification point, in each connected component of S ′ \ S. It is clear

that the action of G extends to an action of S̃′/S′.
Let r : S′ → R be a differentiable function having 0 as a regular value, and such

that r−1([0,∞)) = S. There is a differentiable real plane bundle (V, p) over S̃′

endowed with

(1) an action of G over the action of G on S̃′, and
(2) a G-invariant differentiable norm ν on V ,

such that the 3-manifold N = {v ∈ V | ν(v)2 = r ◦ π′ ◦ p(v)} is G-equivariantly

diffeomorphic to M̃ .
Now, by Theorem 1.3, there are

(1) a structure of a real algebraic variety on S̃′ such that the action of G on S̃′

is algebraic, and
(2) a structure of a real algebraic vector bundle on V such that the action of G

on V is algebraic.

Then we approximate ν by a real algebraic norm on V , again denoted by ν, and may
assume that ν is G-equivariant. As usual in real algebraic geometry, the quotient
surface S′ = S̃′/G is only a semialgebraic subset of a real algebraic surface Z.

The surface Z has singularities at the image of points of S̃′ having even isotropy
groups. Since r is nonzero at those singularities, one can approximate r be a real
algebraic function, again denoted by r, such that r−1([0,∞)) is isotopic to S. Then,
the corresponding 3-manifold N , as defined above, is a ruled real algebraic 3-fold,
endowed with an algebraic action of G. As a differentiable manifold, N is still G-
equivariantly diffeomorphic to M̃ . In particular, the action of G is fixed point-free
and the quotient N/G is a connected component of a uniruled real algebraic variety.
Since N/G is diffeomorphic to M , the Theorem is proved. �
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Bretagne Occidentale, 6, avenue Victor Le Gorgeu, CS 93837, 29238 Brest cedex 3,
France. Tel. +33 2 98 01 61 98, Fax +33 2 98 01 67 90

E-mail address: johannes.huisman@univ-brest.fr

URL: http://fraise.univ-brest.fr/∼huisman



CONNECTED SUM OF LENS SPACES AND UNIRULED REAL ALGEBRAIC VARIETIES 7

Frédéric Mangolte, Laboratoire de Mathématiques, Université de Savoie, 73376 Le
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