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ANISOTROPIC REAL CURVES AND BORDERED LINE
ARRANGEMENTS

JOHANNES HUISMAN AND MICHELE LATTARULO

A real curve X of genus g ≥ 2 is anisotropic if the image of the canonical
morphism k : X → Pg−1 is a rational real curve having no real points. We
describe the moduli space of anisotropic curves, proving that it is isomor-
phic to the moduli space of double coverings of P2 ramified along real line
arrangements.

1. Introduction

Let X be a smooth projective real algebraic curve of genus g greater than 1. The
canonical divisor on X defines a morphism k : X →Pg−1 from X into real projective
space Pg−1. The image k(X) of k is isomorphic either to X , or to the real projective
line P1, or to the “empty circle” S1, understood as the smooth projective rational
curve given by the affine equation x2

+ y2
= −1. The real curve X is said to be

anisotropic if k(X) is isomorphic to the empty circle.
Let X be an anisotropic curve. The following facts are known [Gross and Harris

1981, Proposition 6.2]: the genus g of X is odd, its real locus X (R) is empty, and X
may be represented, in affine 3-space, by a pair of equations of the form x2

+ y2
=

−1 and w2
= p(x, y), where p is a real polynomial of degree g+1. The canonical

morphism k can then be identified with the projection X 3 (w, x, y) 7→ (x, y).
The main problem in studying anisotropic curves is the absence of real points

both in X and in k(X). To circumvent this, we proceed as follows. Let X be
defined by equations as above. We can consider the double covering of the plane,
ramified along the g + 1 real lines joining the g + 1 pairs of complex conjugated
branch points of k in S1. This is a real surface D having real points, and turns out
to be tantamount to and easier to study than the original curve X .

Our results concern the moduli spaces of anisotropic curves. More precisely,
we prove that there is an isomorphism between the moduli space of anisotropic
curves and the moduli space of double coverings of P2 ramified along real line
arrangements (see Theorem 7.1). As a corollary, we improve Proposition 6.2 of
[Gross and Harris 1981], by showing, among other things, that any anisotropic
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curve may be represented, in affine 3-space, by a pair of equations of the form
x2

+ y2
= −1, w2

= p(x, y), where p is a product of linear real polynomials (see
Corollary 7.3). This is the analogue of the representation of complex hyperelliptic
curves by equations of the form y2

= q(x), where clearly, by the fundamental
theorem of algebra, q is a product of linear complex polynomials.

A different problem concerning anisotropic curves has been studied in [Cirre
2000], where the automorphism groups of anisotropic curves have been deter-
mined. Even though it is not our main subject here, it is interesting to examine
the approach of that paper: there, anisotropic curves are studied as defined, in the
affine plane, by complex equations of the form y2

= q(x), where q is a complex
polynomial stable under the action of the antipodal antiholomorphic involution. A
comparison between the two approaches is given in Example 8.1.

The paper is organized as follows. In Sections 2 and 3, we recall the facts
we need about anisotropic curves and their moduli. In Sections 4–6, we study
what we call bordered real line arrangements and the associated double covers of
P2. Section 7 is the core of the paper. There we prove that the moduli space of
real anisotropic curves is isomorphic to the moduli space of double covers of P2

ramified along real line arrangements. Finally, in Section 8, we apply our results
to anisotropic curves of genus 3.

For sake of simplicity, we defined projective curves by affine equations in this
introduction. In the rest of the paper, we will use homogeneous equations, since
this will make some statements nicer.

Convention. A variety over a field is supposed to be proper and geometrically
integral [Hartshorne 1977], unless stated otherwise.

2. Anisotropic curves

Let g be a natural integer greater than 1. Let X be a smooth real algebraic curve
of genus g. The canonical divisor on X defines a morphism k : X → Pg−1 from X
into the real projective space Pg−1. Since g ≥ 2, the image of k is a real algebraic
curve. Since the complexification of k is the canonical map of the complexification
of X , one sees that either k is an isomorphism onto its image, or the image of k is
a smooth rational curve. In the latter case X is said to be hyperelliptic.

Now, a smooth rational real algebraic curve is not necessarily isomorphic to the
real projective line P1. Up to isomorphism, there are two real algebraic curves of
genus 0: the real projective line P1 and the circle S1 in P2 given by the equation
x2

+ y2
+ z2

= 0.
Let X be a real hyperelliptic curve, with canonical map k. The curve X is said

to be isotropic if k(X) is isomorphic to the real projective line P1, and anisotropic
if k(X) is isomorphic to S1.
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The following statement is well known. We include a proof for convenience;
see [Gross and Harris 1981, Proposition 6.1] for a different proof.

Proposition 2.1. The genus of an anisotropic curve is odd.

Proof. Let X be a real hyperelliptic curve. Let g be the genus of X , and let
k : X → Pg−1 be the canonical map. Since X hyperelliptic, the image curve
k(X) is of degree g − 1. If g is even, the degree of k(X) is odd. It follows that
the intersection of k(X) with a real hyperplane of Pg−1 contains a real point. In
particular, k(X) contains a real point, and hence is isomorphic to P1. Thus X is
isotropic if g is even. �

Let X and X ′ be anisotropic curves. We say that X and X ′ are isomorphic if there
is an isomorphism α : X → X ′ of real algebraic curves. This precision may seem
superfluous, but in the literature real curves are sometimes studied up to complex
isomorphism. That is not the object of the present paper.

Let g be an odd natural integer. Let Han
g be the set of isomorphism classes of

anisotropic curves of genus g. The set Han
g is a subset of the moduli space M∅

g
of all smooth real curves of genus g having no real points. Recall that M∅

g has a
natural structure of a semianalytic variety [Huisman 1999]. It is natural to suspect
that the subset Han

g of M∅
g is semianalytic, and indeed:

Proposition 2.2. The subset Han
g of M∅

g is a semianalytic subset.

Proof. According to Proposition 2.1, we may assume that g is odd. Let X0 be
a fixed anisotropic curve of genus g. Let T (X0) and Mod(X0) be the real Te-
ichmüller space and the modular group of X0 (see [Huisman 2000] for details). By
definition, the moduli space M∅

g of all real curves of genus g without real points
is the semianalytic quotient T (X0)/ Mod(X0).

Since X0 is anisotropic, it admits a canonical involution [−1], as all hyperelliptic
curves do. This involution induces a real analytic involution, again denoted by
[−1], on T (X0). The set S(X0) of fixed points of [−1] on T (X0) is then a real
analytic submanifold of T (X0), and its image in M∅

g is the subset Han
g . It follows

that Han
g is a semianalytic subset of Man

g . �

To simplify the notation, we write Hg instead of Han
g from now on.

3. Branch loci of anisotropic curves

Let S1 be the projective real algebraic curve in P2 defined by x2
+y2

+z2
=0. Since

S1 is a rational normal curve in P2, each of its automorphisms extends uniquely
to an automorphism of the real projective plane P2. Hence, one has an injective
morphism

Aut S1
→ Aut P2

= PGL3(R).
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We identify Aut S1 with its image. Let PO3(R) be the image of the orthogonal
group O3(R) in PGL3(R), and PSO3(R) the image of SO3(R). We have

Aut S1
= PO3(R) = PSO3(R).

Recall that a divisor D on S is a finite formal sum
∑

mi Pi , where the mi are
integers and the Pi are closed points of S1. We may assume that Pi 6= Pj if i 6= j .
The degree of D is equal to 2

∑
mi , since each closed point of S1 is of degree 2.

The divisor D is effective if all mi are positive; it is reduced if all mi equal 1.
Let B̃n be the set of effective reduced divisors on S1 of degree n. Since S1

only carries divisors of even degree, the set B̃n is nonempty only if n is even. The
set B̃2n has a natural structure of a connected real analytic manifold of dimension
2n. Indeed, the set of closed points of S1 can be identified with the set S1(C)/G
of pairs of conjugate complex points of S1, where G denotes the Galois group of
C/R. Since S1 is a smooth conic, S1(C) is the Riemann sphere. The action of
G on S1(C) has no fixed points. Since this action is real analytic, S1(C)/G is a
compact connected real analytic surface, in fact isomorphic to the real projective
plane P2(R). We already see that B̃2 has a natural structure of a connected real
analytic manifold of dimension 2. Now, let

1 = {(P1, . . . , Pn) ∈ B̃n
2 | Pi = Pj for some i 6= j}.

be the big-diagonal in the n-fold power B̃n
2 . Since B̃2 is a connected real analytic

manifold of dimension 2, the complement B̃n
2 \1 of 1 is a connected real analytic

manifold of dimension 2n. Let

µ : B̃n
2 \ 1 → B̃2n

be the summation map defined by µ(P1, . . . , Pn)=
∑n

i=1 Pi . The symmetric group
Sn acts on B̃n

2 \ 1 without fixed points. Therefore, the quotient (B̃n
2 \ 1)/Sn is a

connected real analytic manifold of dimension 2n. Since µ induces a bijection
between that quotient manifold and the set B̃2n , the latter set acquires a natural
structure of a connected real analytic manifold of dimension 2n.

The automorphism group PSO3(R) acts left-handedly on B̃2n by β · B = β(B),
for all B ∈ B̃2n . The quotient B2n of B̃2n by the action of PSO3(R) is an irreducible
semianalytic variety of dimension 2n −3, if n is even and greater than 2 [Huisman
1999]. One can check that in general B̃2n is a true semianalytic variety (that is,
neither smooth nor analytic).

Let g be an odd integer greater than 1. Let X be an anisotropic curve of genus
g, and let k be the canonical map of X . After fixing an isomorphism between k(X)

and S1, we may and will assume that k is a morphism from X into S1. Let B be
the branch locus of k. Since X is smooth, B is a reduced effective divisor on S1.
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By Riemann–Hurwitz, the degree of B is 2g + 2. Define a map

λg : Hg → B2g+2

by λ(X)= B; this is clearly well defined. One can check directly that λg is analytic,
but since the analyticity of λ will also follow from our main result, we prefer to go
on to the next section.

4. Real line arrangements

A real line arrangement in P2 is a reduced real algebraic curve in P2 all of whose
irreducible components are real projective lines. We say that two real line arrange-
ments A and A′ are isometric if there is β ∈ PSO3(R) such that β(A) = A′.

Let n be a natural integer. Let Ãn be the set of all real line arrangements of
degree n. The set Ãn has a natural structure of a connected real analytic manifold
of dimension 2n. Indeed, let R[x, y, z]?1 be the set of all nonzero real linear forms in
x, y, z. Let 0 be the subset of the n-fold power R[x, y, z]?n

1 of R[x, y, z]?1 given by

0 = {(L1, . . . , Ln) ∈ R[x, y, z]?n
1 | L i = λL j for some i 6= j and some λ ∈ R?

}.

Since R[x, y, z]?1 is a connected real analytic manifold of dimension 3, the com-
plement of 0 in R[x, y, z]?n

1 is a connected real analytic manifold of dimension 3n.
Let R[x, y, z]?n denote the set of nonzero homogeneous real polynomials of degree
n in x, y, z, and let

π : R[x, y, z]?n
1 \ 0 → R[x, y, z]?n

be the product map defined by π(L1, . . . , Ln) =
∏n

i=1 L i . The composition Z ◦π

maps (L1, . . . , Ln) to the zero locus Z
(∏

L i
)
, which is a real line arrangement of

degree n. It follows that the composition

Z ◦ π : R[x, y, z]?n
1 \ 0 → Ãn

is a quotient map for the natural action of the semidirect product R?n o Sn on
R[x, y, z]?n

1 \0. Since that action is free, the quotient of R[x, y, z]?n
1 \0 by R?n oSn

is a connected real analytic manifold of dimension 2n. Therefore, Ãn acquires a
natural structure of a connected real analytic manifold of dimension 2n. In fact,
as for B̃2n , the real analytic manifold Ãn is naturally isomorphic to the quotient
manifold (Ãn

1 \ 1)/Sn , where 1 is the big diagonal in Ãn
1 .

Let
ι̃n : Ãn → B̃2n

be the map that associates to a real line arrangement A∈ Ãn the intersection product
A ·S1. Note that, since A is of degree n, the intersection product A ·S1 is a reduced
effective divisor on S1 of degree 2n, i.e., one has, indeed, ι̃n(A) ∈ B̃2n .
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Proposition 4.1. The map ι̃n is an isomorphism of real analytic manifolds.

Proof. Let
φ : R[x, y, z]?1 → B̃2

be the map defined by setting φ(L) to the divisor Z(L) · S1 on S1. It is easy to
check that φ induces a real analytic isomorphism from R[x, y, z]?1/R? onto B̃2. If
one identifies Ã1 with R[x, y, z]?1/R? as above, the induced isomorphism coincides
with the map ι̃1. It follows that ι̃1 is a real analytic isomorphism. This proves the
statement for n = 1.

In order to prove the statement for arbitrary n, let

ι̃n1 : Ãn
1 → B̃n

2

be the n-fold cartesian power of ι̃1. Since ι̃1 is a real analytic isomorphism, the
map ι̃n1 is one too. Let, by abuse of notation, 1 denote the big diagonal in Ãn

1
as well as the big diagonal in B̃n

2 . Then ι̃n1 induces a real analytic isomorphism
from (Ãn

1 \ 1)/Sn onto (B̃n
2 \ 1)/Sn . As observed above, the former real analytic

manifold can be identified with Ãn , and the latter with B̃2n . The induced real
analytic isomorphism from Ãn into B̃2n clearly coincides with ι̃n . It follows that
ι̃n is a real analytic isomorphism. �

Remark 4.2. The map ι̃n can be naturally extended to a map from the set of
possibly nonreduced real line arrangements of degree n into the set of possibly
nonreduced effective divisors of degree 2n on S1. This extension is not a real
analytic isomorphism, only a real analytic bijection [Huisman 2005, Theorem 2.1].

The group PSO3(R) acts left-handedly on Ãn by β · A = β(A). The quotient
An = PSO3(R)\Ãn is an irreducible semianalytic variety of dimension 2n − 3, if
n is greater than 1 [Huisman 1999].

We recall that an analytic map between semianalytic varieties is a morphism
between locally ringed spaces. It is then also clear what is understood by an iso-
morphism of semianalytic varieties.

Corollary 4.3. The map ι̃n is equivariant and induces an isomorphism

ιn : An → B2n.

of semianalytic varieties.

5. Bordered real line arrangements

A bordered real line arrangement is a pair (A, O), where A is a real line arrange-
ment and O is a closed subset of P2(R) whose boundary is equal to A(R). Let
(A, O) and (A′, O ′) be two bordered real line arrangements. Then (A, O) and
(A′, O ′) are isometric if there is β ∈ PSO3(R) such that β(A)= A′ and β(O)= O ′.
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Figure 1. A bordered real line arrangement of degree 4.

Proposition 5.1. Let A be a real line arrangement. There is a closed subset O of
P2(R) such that (A, O) is a bordered real line arrangement if and only if deg A is
even.

Proof. Suppose that deg A is even. Let F be a homogeneous real polynomial
defining A. The subset O defined as the locus of all points of P2(R) where F is
nonnegative, is well defined. It is clear that (A, O) is a bordered real line arrange-
ment.

To prove the converse, let O be a closed subset of P2(R) such that (A, O) is a
bordered real line arrangement. Let F be a homogeneous real polynomial defining
A. We have to show that deg F is even. Let π : S2

→ P2(R) be the canonical map
from the 2-sphere S2 into P2(R). The closed subsets of S2 given by

C+ = {F ◦ π ≥ 0} and C− = {F ◦ π ≤ 0}

are well defined. Since the boundaries of π−1(O), C+ and C− are all equal to the
zero set of F ◦ π , the subset π−1(O) is equal to C+ or C−. It follows that either
C+ or C− is stable under multiplication by −1 on S2. Therefore, the degree of F
is even. �

Let n be a natural integer. Let D̃n be the set of all bordered real line arrangements
of degree n. By the preceding proposition, the set D̃n is nonempty if and only if n
is even. The set D̃n has a natural structure of an irreducible real analytic manifold
of dimension 2n, if n is even. Indeed, let

γn : R[x, y, z]?n
1 \ 0 → D̃n

be the map defined by γn(L1, . . . , Ln) = (A, O), where A is the real line arrange-
ment defined by

∏
L i and O is the closed subset {

∏
L i ≥ 0} of P2(R). Let H be

the subgroup of R?n of all elements (λ1, . . . , λn) for which
∏

λi is positive. The
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natural action of R?n o Sn on R[x, y, z]?n
1 \0 restricts to an action of H o Sn . The

map γn induces a bijection between the quotient (R[x, y, z]?n
1 \0)/H o Sn and D̃n .

Since the former subset is a connected real analytic manifold of dimension 2n, the
set D̃n acquires the structure of such a manifold by transport of structure.

One has a forgetful map
φ̃n : D̃n → Ãn

that associates to a bordered real line arrangement (A, O) the real line arrangement
A. The map φ̃n is clearly an unramified real analytic covering of Ãn of degree 2.

The group PSO3(R) acts left-handedly on D̃n by β · (A, O) = (β(A), β(O)).
Let

Dn = PSO3(R)\D̃n.

Then Dn is an irreducible semianalytic variety of dimension 2n − 3, if n is even
and greater than 1. Since φ̃n is equivariant, one has an induced real analytic map

φn : Dn → An.

Note that φn is not necessarily unramified.

6. Double coverings ramified along a line arrangement

Let f : D → P2 be a ramified double covering of P2, where D is a not neces-
sarily smooth real algebraic variety. We say that f is ramified along a real line
arrangement if the ramification locus of f is a real line arrangement in P2. Two
such coverings f : D → P2 and f ′

: D′
→ P2 are said to be isometric if there is

an isomorphism α : D → D′ and an isometry β of P2 such that f ′
◦ α = β ◦ f .

Let f : D → P2 be a double covering ramified along a real line arrangement.
Let A be the real line arrangement along which f is ramified. Let O = f (D(R)).
Then (A, O) is a bordered real line arrangement. Moreover, any bordered real
line arrangement is the bordered real line arrangement of a double covering of P2

ramified along a real line arrangement. It follows that there is a natural bijection
between the set of isometry classes of bordered real line arrangements of degree
n, and the set of isometry classes of double coverings of P2 that are ramified along
a real line arrangement of degree n. In the sequel, we will identify the latter set
with the former, and speak about elements of Dn as ramified double coverings of
P2. In particular, the set of isometry classes of double coverings of P2 that are
ramified along a real line arrangement of degree n carries a natural structure of
an irreducible semianalytic variety of dimension 2n − 3, if n is even and greater
than 1. The forgetful map

φn : Dn → An

associates to the isometry class of a double covering in Dn , its ramification locus.
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7. Moduli of anisotropic curves

Let g be an odd natural integer greater than 1. Recall that Hg is the semianalytic
moduli space of anisotropic curves of genus g. Define a map

ρg : Dg+1 → Hg

as follows. Let f : D → P2 be a double covering, ramified along a real line
arrangement of degree g +1. Let X be the fiber product of D and S1 over P2 with
respect to the morphism f : D → P2 and the inclusion morphism S1 ↪→ P2, i.e.,

X = D ×P2 S1.

The curve X is a smooth real algebraic curve. The morphism f induces a morphism

h : X → S1.

Since f is a double covering, the degree of h is equal to 2. Since the ramification
locus of h is a reduced divisor of degree 2(g + 1) on S1, the curve X is a smooth
real algebraic curve of genus g. Since X admits a morphism of degree 2 into S1,
the curve X is an anisotropic curve. Define ρg(D) = X . It is clear that ρg is well
defined.

We have a commutative diagram

Dg+1
ρg - Hg

Ag+1

φg+1
? ιg+1- B2g+2

λg
?

Theorem 7.1. Let g be an odd natural integer greater than 1. The map ρg is a real
analytic isomorphism of semianalytic spaces.

Proof. We first prove surjectivity. Let X be an anisotropic curve of genus g, and
let k be the canonical map of X . Since X is anisotropic, we may assume that k is
a morphism of degree 2 from X into S1. Let B be the branch locus of k. Since
ι̃g+1 is surjective, there is a real line arrangement A of degree g + 1 such that
A · S1

= B. Since g is odd (Proposition 2.1), g + 1 is even and there is a double
covering f : D → P2 ramified along A. Let f −

: D−
→ P2 be the double covering

of P2 obtained from f by twisting the real structure [Huisman and Lattarulo 2005].
Then either the curve D ×P2 S1 or the curve D−

×P2 S1 is isomorphic to X , i.e.,

ρg(D) = X or ρg(D−) = X.

This proves that ρg is surjective.
Next, we prove the injectivity of ρg. Let f : D → P2 and f ′

: D′
→ P2

be double coverings that are ramified along the real line arrangements A and A′,
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respectively, both of degree g+1. Let (A, O) and (A′, O ′) be the bordered real line
arrangements associated to f and f ′. Let F and F ′ be homogeneous polynomials
in R[x, y, z] of degree g+1 that define the bordered real line arrangements (A, O)

and (A′, O ′). This means that A is the vanishing set of F in P2 and O is the set
of real points of P2 at which F is nonnegative, and similarly for (A′, O ′) and F ′.
Then D is isomorphic to the ramified double covering of P2 given by the equation
w2

= F(x, y, z), and similarly for D′.
Let X = D ×P2 S1 and X ′

= D′
×P2 S1 be the anisotropic curves induced by D

and D′. The curve X is isomorphic to the ramified double covering of S1 defined
by the equation w2

= F(x, y, z), and similarly for X ′. Here there is a slight abuse
of notation: we denote again by F its restriction to S1.

Assume that X and X ′ are isomorphic via α : X → X ′. There is an automorphism
β : S1

→ S1 such that h′
◦ α = β ◦ h, where h and h′ are the morphisms induced

by f and f ′. Since S1 is a rational normal curve in P2, β is the restriction of an
isometry of P2, again denoted by β. Since β maps the branch locus of f into the
branch locus of f ′, there is a nonzero real number µ such that β?(F ′) = µF . In
particular, β(A) = A′. Over S1, one has

(α?(w′))2
= α?((w′)2) = β?(F ′) = µF.

Hence, the rational function α?(w′)/w on X is a square root of µ. Since X is
geometrically irreducible, µ is positive. It follows that β · (O) = O ′, i.e., D and
D′ are isometric. This proves that ρg is injective, and therefore, bijective.

It remains to show that ρg and ρ−1
g are analytic. To do this for ρg, let U be the

universal family of double covers over D̃g+1. More precisely, U is a relative real
algebraic surface over the real analytic manifold D̃g+1, which is endowed with a
morphism f over D̃g+1 from U into P2

× D̃g+1 such that, for all D ∈ D̃g+1, the
fiber UD of U is equal to D, and the fiber fD of f is the ramified cover D → P2.

Let V be the fiber product of U and S1
× D̃g+1 over P2

× D̃g+1. Then V is a
real analytic family of anisotropic curves of genus g over D̃g+1. By the universal
property of the moduli space Hg, there is a unique real analytic map ρ̃g from D̃g+1

into Hg such that ρ̃g(D) is equal to the fiber VD of V at D. It follows that ρ̃g

induces a real analytic map from Dg+1 into Hg. It is clear that the induced map
coincides with ρg. Therefore, ρg is real analytic.

A similar argument will prove that ρ−1
g is real analytic, once one has a good

universal family of anisotropic curves of genus g. Therefore, we will only indicate
the construction of that universal family.

Recall the notation introduced in the proof of Proposition 2.2: X0 is a fixed
anisotropic curve of genus g, T (X0) the real Teichmüller space of X0, Mod(X0)

the modular group of X0, and S(X0) the subset of T (X0) of fixed points for the
induced action of the hyperelliptic involution [−1] of X0 on T (X0).
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Unlike M∅
g , the Teichmüller space T (X0) admits a real analytic universal family

X of real curves of genus g without real points. Let Y be the restriction to S(X0)

of the universal family X. The involution [−1] on the fiber X0 of Y extends to an
involution of Y over S(X0) that we again denote by [−1]. The space S(X0) is a
Teichmüller space of anisotropic curves of genus g. The quotient family Y/[−1]

is a real analytic family of smooth rational curves without real points over S(X0).
Since S(X0) is contractible, the family Y/[−1] is isomorphic to the constant family
S1

× S(X0). Hence, we have a universal family Y of anisotropic curves over a real
analytic manifold S(X0), endowed with a morphism f over S(X0) from Y into
S1

× S(X0). As above, this family induces a real analytic map from S(X0) into
Dg+1 that, in turn, induces a real analytic map that coincides with ρ−1

g . �

Corollary 7.2. Let X and X ′ be anisotropic curves. Let (A, O) and (A′, O ′) be
the bordered real line arrangements corresponding to X and X ′ respectively. Then
X and X ′ are isomorphic if and only if (A, O) and (A′, O ′) are isometric. �

As a consequence of Theorem 7.1 we get explicit formulas for anisotropic
curves, and are able to determine when two such curves are isomorphic:

Corollary 7.3. Let f : X → S1 be an anisotropic curve of genus g. There are
linear forms L1, . . . , Lg+1 ∈ R[x, y, z], with L i not a multiple of L j for i 6= j ,
such that the curve X is the normalization of the real curve in P3 defined by the
equations

x2
+ y2

+ z2
= 0 and w2zg−1

= p(x, y, z),

where p = L1 · · · Lg+1. If L ′

1, . . . , L ′

g+1 are other linear forms, with L ′

i not a multi-
ple of L ′

j for i 6= j , then the anisotropic curve X ′ defined by L ′

1, . . . , L ′

g+1 as above
is isomorphic to X if and only if there are nonzero real numbers µ1, . . . , µg+1, an
isometry β ∈ PSO3(R), and a permutation σ ∈ Sg+1 such that

β?(L i ) = µi Lσ(i) and µ1 · · · µg+1 > 0. �

8. Examples: anisotropic curves of genus 3

We now apply our results to the study of anisotropic curves of genus 3. In Example
8.1 we determine the anisotropic curves with automorphism group S4 × Z/2Z. In
Example 8.2 we show that an anisotropic curve defined by a bordered line arrange-
ment (A, O) is not necessarily isomorphic to the opposite anisotropic curve X−

defined by the opposite bordered line arrangement (A, P2(R) \ O◦). Finally, in
Example 8.3 we show how our methods apply to the study of moduli spaces of
anisotropic curves with a fixed automorphism group.

Example 8.1. Suppose that X is an anisotropic curve with automorphism group
isomorphic to S4 ×Z/2Z. Let (A, O) be the bordered line arrangement associated
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Figure 2. One of the two bordered real line arrangements (A, O)

of Example 8.1 with isometry group S4.

to X . Then the group of isometries of (A, O) is isomorphic to S4. One may assume
that the group of isometries of (A, O) is generated by the automorphism β1 of order
4 and the involution β2 defined by

β1([x : y : z]) = [−y : x : z] β2([x : y : z]) = [z : y : x]

and that A contains the real projective line defined by x + y + z = 0. Put

p(x, y, z) = (x + y + z)(x − y + z)(−x + y + z)(−x − y + z).

Then A is defined by the polynomial p, and O is either equal to {p ≥ 0}, or
{p ≤ 0}. It follows that X is isomorphic to the anisotropic curve of P3 defined,
over S1, either by the equation w2zg−1

= p(x, y, z) or by the equation w2zg−1
=

−p(x, y, z). Moreover the automorphisms group of X is isomorphic to S4×Z/2Z:
this follows by the considerations above, and by the fact that the order of Aut X
cannot exceed 48, since the genus of X is 3.

We take the occasion to compare with the approach followed in [Cirre 2000].
There, anisotropic curves are studied as curves defined, in the affine plane, by
complex equations of the form v2

= q(u), stable under the action of the antipodal
antiholomorphic involution σ(u, v) = (−1/ū, v̄

√
q(0)/ūg+1). Doing it like this,

one obtains the following equation for one of the anisotropic curves with isomor-
phism group S4 × Z/2Z:

v2
= (u2

+ (−1+ i)u + i)(u2
+ (1+ i)u − i)(u2

+ (1− i)u + i)(u2
+ (−1− i)u − i)
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(the four factors correspond to the four factors of the polynomial p above) and the
automorphism group of X is generated by the hyperelliptic involution and by the
automorphisms

γ1(u, v) = (iu, v) γ2(u, v) =

(
−u + 1
u + 1

,
−4v

(u + 1)4

)
that correspond to the automorphisms β1 and β2 above.

Example 8.2. Let X be the anisotropic curve defined in P3 by an equation of
the form w2zg−1

= p(x, y, z) over S1. The curve X− defined by the equation
w2zg−1

= −p(x, y, z) over S1 is said to be its opposite curve. It is clear that X
and X− have the same branch locus and isomorphic automorphism groups, so it is
natural to ask when X and X− are isomorphic. This question is of central interest
when one studies the problem of characterizing the Jacobians of real curves among
all principally polarized real abelian varieties; see [Huisman and Lattarulo 2005;
Lattarulo 2003]. We will give a complete answer in a forthcoming paper. Here we
show that X and X− may be nonisomorphic. In Example 8.3 we will see that X
and X− may be isomorphic.

Let X be one of the curves of Example 8.1. If there were an isomorphism
γ : X → X−, its complexification α = γC would be a nonreal automorphism of
XC. But we have seen in Example 8.1 that Aut X = S4 × Z/2Z. Since Aut X is a
subgroup of Aut XC and since a complex curve of genus 3 cannot have more than
48 automorphisms, we conclude that Aut XC = Aut X . Thus all the automorphisms
of XC are real for X and, by the remarks above, X and X− cannot be isomorphic.

Example 8.3. Let G be a finite group and let Hg(G) be the subspace of Hg con-
sisting of the anisotropic curves X ∈ Hg such that G × Z/2Z is isomorphic to a
subgroup of Aut X . The theory developed in this paper allows to answer to the
following questions:

(1) When is Hg(G) nonempty? (This question has also been treated in [Cirre
2000].)

(2) What is the real dimension of Hg(G) as a subspace of Hg?

(3) What is the number of connected components of Hg(G)?

For example, in genus 3, one easily obtains the following table, which summarizes
the answers to our questions. The first row lists the groups G for which H3(G) is
nonempty. The second and the third rows show the dimension and the number of
connected components of H3(G), respectively.

G S4 D4 D3 D2 Z/2Z Id

dim H3(G) 0 1 1 2 3 5
#π0H3(G) 2 3 1 3 5 1
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Here we describe in detail the moduli space H3(D4). The moduli space H3(S4)

has essentially been described in Example 8.1. For the remaining cases (and in
higher genus) one proceeds in a similar way.

So, let X ∈ H3(D4). We choose as generators of D4, embedded in PO3(R), the
isometries of P2 given by

β1[x : y : z] = [x : −y : z], β2[x : y : z] = [−y : x : z].

The bordered line arrangements whose group of isometries contains D4 are ({p =

0}, {p ≥ 0}), where p ∈ C1 ∪ C2 ∪ C3 and

C1 = {p ∈ R[x, y, z] : p(x, y, z) = (x2
− ay2)(ax2

− y2), a ∈ R?,+, a < 1},

C2 = {p ∈ R[x, y, z] : p(x, y, z) = (x2
− bz2)(y2

− bz2), b ∈ R?,+
},

C3 = {p ∈ R[x, y, z] : p(x, y, z) = −(x2
− bz2)(y2

− bz2),b ∈ R?,+
}.

It follows that X may be defined, in P3, by the equation w2zg−1
= p(x, y, z)

over S1, where p ∈ C1 ∪ C2 ∪ C3. More precisely, let ρ be the map that sends
a polynomial p ∈ C1 ∪ C2 ∪ C3 into the anisotropic curve X ∈ H3(D4) defined,
in P3, by the equation w2zg−1

= p(x, y, z) over S1. Then ρ is a bijection, the 3
connected components of H3(D4) are ρ(C1), ρ(C2), ρ(C3), and each one of these
components is one-dimensional.

We remark that, if p ∈ C1 is the polynomial corresponding to the value a =

3−2
√

2, the curve X = ρ(p) is isomorphic to its opposite curve X− (see Example
8.2 for this notion). If q ∈ C2 is the polynomial corresponding to the value b = 2,
the curve X = ρ(q) and its opposite X− are the curves studied in Examples 8.1
and 8.2, respectively.
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