UFR Mathématiques, Université de Rennes 1 Licence de Mathématiques

ALGEBRE ET APPLICATIONS GEOMETRIQUES

Examen terminal, 30 mai 2001, 8h-11h

Documents et calculatrices sont interdits. On pourra utiliser tous les résultats du cours, du polycopié et des TD à condition d'y référer. Barème indicatif: 1: 2 points, 2: 5 points, 3: 3 points, 4: 4 points, 5: 6 points.

- 1. Soit G un groupe. Un élément $y \in G$ est un carré de G s'il existe $x \in G$ tel que $y = x^2$. Soit H le sous-groupe de G engendré par les carrés de G.
 - a. Montrer que H est distingué dans G.
 - b. Montrer que le quotient G/H est abélien.
 - c. Soient $a, b \in G$ et soit $[a, b] = aba^{-1}b^{-1}$. Montrer que [a, b] s'écrit comme un produit de carrés de G.
- 2. Déterminer le nombre de groupes d'ordre 2001 à isomorphisme près.
- **3.** Soit G un groupe fini. Soient E et E' deux ensembles munis d'une action transitive de G à gauche. Soit $\varphi \colon E \to E'$ une application vérifiant

$$\varphi(g\cdot x)=g\cdot \varphi(x)$$

pour tout $x \in E$ et tout $g \in G$. Soient s et s' le cardinal de E et E' respectivement. Montrer que s' divise s.

- **4.** Soient G et G' des groupes finis et $f: G \to G'$ un morphisme surjectif. Soit p un nombre premier.
 - a. Soit S un p-sylow de G. Montrer que f(S) est un p-sylow de G'.
 - b. Soient s et s' le nombre de p-sylows de G et G' respectivement. Montrer que s' divise s.
- **5.** Soient G et H des groupes et $\alpha \colon H \to \operatorname{Aut}(G)$ un morphisme. Soient G' et H' des sous-groupes de G et H respectivement.
 - a. Montrer que le sous-ensemble $G' \times H'$ est un sous-groupe du produit semi-direct $G \rtimes_{\alpha} H$ si et seulement si $\alpha(y)(x) \in G'$ quels que soient $x \in G'$ et $y \in H'$.
 - b. Dans le cas où le sous-ensemble $G' \times H'$ est un sous-groupe de $G \rtimes_{\alpha} H$, montrer que ce sous-groupe est un produit semi-direct de G' et H' relativement à un morphisme $\alpha' \colon H' \to \operatorname{Aut}(G')$ que l'on précisera.

- c. Montrer que le sous-ensemble $G' \times H'$ de $G \rtimes_{\alpha} H$ est un sous-groupe distingué si et seulement si
 - (i) $\alpha(h)(x) \in G'$ pour tout $x \in G'$ et $h \in H$,
 - (ii) H' est distingué dans H, et
 - (iii) $g \cdot x \cdot \alpha(y)(g^{-1}) \in G'$ pour tout $x \in G'$, $y \in H'$ et $g \in G$.
- d. Soient $G = \mathbb{Z}/3\mathbb{Z}$, $H = S_4$ et $\alpha(h)(g) = \varepsilon(h) \cdot g$ pour tout $g \in \mathbb{Z}/3\mathbb{Z}$ et $h \in S_4$, où ε est le morphisme de signature. Déterminer une suite de Jordan-Hölder pour $\mathbb{Z}/3\mathbb{Z} \rtimes_{\alpha} S_4$.