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FORMAL POWER SERIES 
IVAN NIVEN, University of Oregon 

1. Introduction. Our purpose is to develop a systematic theory of formal 
power series. Such a theory is known, or at least presumed, by many writers 
on mathematics, who use it to avoid questions of convergence in infinite series. 
What is done here is to formulate the theory on a proper logical basis and thus 
to reveal the absence of the convergence question. Thus "hard" analysis can be 
replaced by "soft" analysis in many applications. 

John Riordan [4] has discussed these matters in a chapter on generating 
functions, but his interest is in the applications to combinatorial problems. A 
more abstract discussion is given by de Branges and Rovnyak [1]. Many ex- 
amples of the use of formal power series could be cited from the literature; we 
mention only two, one by John Riordan [5] the other by David Zeitlin [6]. 

The scheme of the paper is as follows. The theory of formal power series is 
developed in Sections 3, 4, 5, 6, 7, 11, and 12. Applications to number theory 
and combinatorial analysis are discussed in Sections 2, 8, 9, 10, and in the last 
part of 11. 

The paper is self-contained insofar as it pertains to the theory of formal 
power series. However, in the applications of this theory, especially in the ap- 
plication to partitions in Section 9, we do not repeat here the fundamental re- 
sults needed from number theory. Thus Sections 9 and 10 may be difficult for 
a reader who is not too familiar with the basic theory of partitions and the sum 
of divisors function. This difficulty can be removed by use of the specific refer- 
ences given in these sections; only a few pages of fairly straightforward material 
are needed as background. In Section 11 on the other hand, the background ma- 
terial is set forth in detail because the source is not too readily available. 

2. An example from algebra. To motivate the theory we begin with an 
illustration from algebra, to be found in Jacobson [2, p. 19]. Let qn denote the 
number of ways of associating an n-product a1a2a3 . . . an in a nonassociative 
system. For example q3 =2 because a,(a2a3) and (aja2)a3 are the only possibil- 
ities. Similarly q4=5 because of the cases aj(a2(a3a4)), aj((a2a3)a4), (aja2)(a3a4), 
(a,(a2a3))a4, ((ala2)a3)a4. For n >2 it is easy to establish the recursive formula 

n-1 

(1) qn = q qjqn-j, 
j=1 

by the following argument. In imposing a system of parentheses on aja2a3 . . . an 
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872 FORMAL POWER SERIES [October 

to make it a well-defined n-product, we can begin by writing 

(2) (a1a2 ... aj)(aj+laj+2 ... an). 

Now the number of ways of associating the product aja2 *aj is q; by defini- 
tion, and likewise the second factor in (2) can be associated in qn- Jways. 
Hence (2) can be associated in qjqn-j ways, and formula (1) follows by consider- 
ing the possible values for j. Now define the power series 

(3) f(x) - qjxi. 
j=l 

Taking for granted (for the moment) the multiplication of power series, we 
see that for n 2 2 the coefficient of xn in {f(x) } 2 iS 

qlqn-1 + q2qn-2 + q3qn-3 + * * * + qn-lql. 

But this is qn by (1), and so we see that {f(x)}2=f(x)-x orf2-f+x=0. 
Solving this quadratic equation forf we get 

(4) f(x) = f = .{1 ? (1 -4x) 1/2J. 

The binomial theorem gives 

2 ~~2!2 (1- 4x) 1/2 = 1 + -(-4x) + 2 (-4x) 2+ 

2(21) 22) .. n 2f + 1) 
+ - ~ (-4x)n +*X . 

ni 

The coefficient of xn here can be simplified by multiplying numerator and 
denominator by 2n to give 

(1)(-1)(-3)(-5) * (-2n + 3) 1*3*5 * (2n - 3) _ (4)n =_---.2n 
2ff-n! n! 

(2n - 2)! 

(n )2n-1(n -1)! 
(2n - 2)! 

n!(n-1)! 

In view of the minus sign here we see that (4) holds with the minus sign and 
not the plus sign. Comparing coefficients of Xn in (4) we get the simple formula 
for qn, 

(2n - 2)! 
(5) qn = 

(-1 

This analysis, however, leaves a number of questions unanswered. Why can 
we solve the quadratic to derive (4)? Why can we equate coefficients on the two 
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1969] FORMAL POWER SERIES 873 

sides of (4) to obtain (5)? To avoid hard analysis in answering such questions, 
we now develop a theory of formal power series that involves no questions of 
convergence or divergence. At the end of Section 5 we shall return to the ques- 
tion of the validity of the procedure leading to formula (5). 

3. Formal power series. Define ax to be an infinite sequence of complex num- 
bers 

(6) Ca = [ao, al, a2, a3, ... 

By P we denote the class of all such infinite sequences a, and these are the for- 
mal power series. There are three subsets of P that play a significant role: 

P,: those sequences a all of whose components aj are real numbers; 
P1: those sequences a with aO = 1; 
Po: those sequences a with ao = 0. 

Although we have specified that the components aj in the elements of P are 
complex nuinbers, the theory could be developed with the as in any integral 
domain. 

If I3CP, say ,3= tbo, bi, b2, b3, ], define addition by 

a + f = [ao + bo, a, + bi, a2+ b2,* 

Define multiplication by 
n 

ai8 = aobo, albo + aob1, a2bo + alb1 + aob2,, E ajbnj* 

The definition of equality is that a=j3 if and only if aj=bj for all j, i.e., j=O, 
1, 2, 3, 

It is not difficult to establish that the set P is a commutative ring with a 
unit. The zero element and the unit element are 

z = [0,0, ,0 O, ] and u = [1, O. O. O. 

Given any a = [ao, a,, a2, a3, * the additive inverse of a is -a [-ao, -a1, 
-a2, -a3, . . . ]. The verification of the associative property of multiplication 
is not difficult, and it is the only property of any depth in establishing that P is 
a commutative ring. 

Moreover, ao = z if and only if a= z orI =z. If a = z or ,B=z it is obvious that 
af3=z. To establish the converse, suppose that ao4=z but aoz and j3z. Let 
j be the least nonnegative integer such that aj#O, and similarly let k be the 
least nonnegative integer such that bk #0. Then the component in the 
(J+k+1)-th position in af3 is 

a,j -= ajbk. # 0, 
r-O 

which contradicts aoj = z. 
It follows that if aoj = ay and a --z then j=y, and P is an integral domain. 
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Given any a in P, there corresponds a multiplicative inverse a-' if there is an 
element a1 in P such that 

Cl!-' = a-' = i = [1, O,, O, * *. 

THEOREM 1. If a = [ao, a,, a2, * ], ao 1 exists if and only if ao#0. 

Proof. Denote a-' by [cO, cl, c2, ... ]. We see that a a-'= u amounts to an 
infinite system of equations 

n 

aoco = 1, alco + aoc1 = 0, ..., E aCn = 0. 
j=O 

These equations can be solved successively for co, cl, c2, if and only if ao 0 0. 

LEMMA 2. Let 13CP1, so that j3 is of the form [1, bl, b2, b3, * . Then for any 
positive integer n we see that O3nEPi, say 03n= [1, C1, C2, c3, C . Also cl=n bi 
and for each k ?2 we have ck= n bk +fn ,k (b1, b2, bk1) where fn,,k is an appro- 
priate polynomial in bi, b2, , * * , bk-l 

Proof. This result can be readily established by induction on n. 

THEOREM 3. Let a CPi, say a= [I, a1, a2, a3, . . . ], and let n be any positive 
integer. Then there is a unique 3E&P1, say ,B-[1, b1, b2, b3, ], such that On =a. 
Define a ln = . 

Proof. Using Lemma 2 we can solve the equations 

nb1 = a1, nb2 + f2,n(b1) = a2, . . ., nbk + fk,n(b1, b2, bk-1) = ak, 

successively for b1, b2, b3, 

THEOREM 4. For any positive integer n and aCPi, we have (a-1) = (an)-1. 

Define a -n = (a n)-1 and a0 = u. 

Proof. We see that a n(a-1)n =a a . * . a * a- a-' *a(2-l' = u. (Another way 
of establishing Theorem 4 is to observe that P1 is a multiplicative group.) 

THEOREM 5. Let m and n be any integers, n > 0. To any a (P1 there corresponds 
a unique 13CP1 such that atn =j3n, i.e., 3 = amn/n. 

Proof. This is a corollary of Theorem 3 with a in that theorem replaced 
by atm. 

4. A power series notation. Let X denote the particular element [0, 1, 0, 0, 
0, ]of P so that 

AS 2= [OX OX 1 O OX *l .. *1 ]X I = [OJ 0X 07 1, OX OX *.**.] 

and in general Xn-1 is the sequence with zeros in all positions except the nth, 
where 1 occurs. We now introduce the notation 

00 

(7) , ajXi = ao + ajX + a2 X2 + a3X'3 +** 
i=O 
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19691 FORMAL POWER SERIES 875 

for a= [ao, a,, a2, ]. What this amounts to is an agreement that a1 in (7) 
stands for [aj, 0, O, O, . . . ] and that XO= [1, 0, 0, 0, . . . ]. Thus we are not 
extending the integral domain P to a vector space by introducing scalar multi- 
plication; this could be done, but all we intend by (7) is an alternative, con- 
venient notation for the elements of P. Thus z and u can now be written simply 
as 0 and 1. The definitions of addition, multiplication, and equality of elements 
of P can be rewritten as follows. With a as in (7) and 

00 

= [bo b, b2, . . . 
=E bjXj, 

j=o 

then 
00 00 7 

a + ,B = E (aj + bj)X', a =E E akbf. k) X0, 
j=O 0jO k0 

and a=,B if and only if aj = bj for all j = 0, 1, 2, 3, 
For example, in the earlier notation we could write 

L1, -1, ,0 ,0 , . . . ]*[1, 1, 1, 1, 1,* ] = [1,0 ,0 ,0 ,0 , * * . J. 

This can now be written as (1 -X)(1+X +X2+X3+ * * * ) = 1, or (1 -X)-1 
= 1 +X+X2+X3+ *-*. A general binomial theorem is established later, in 
Theorems 11 and 17. 

THEOREM 6. Let n be any positive integer, let a(=P, and 13Pr, so that a and ,B 
are real sequences. If n is odd, aCn = gn implies a = 1. If n is even, an = 13n implies 
a=13 or a= -P. 

Proof. We may presume a 0- and i# - O. For if az = 0, for example, then all = 0, 
3n= 0 and so 13=0, a =,B. Let X denote the nth root of unity 

w = e2lifn = cos(27r/n) + i sin(27r/n). 

Then aO-fn3=o can be factored a -n n = nlJ1(a-cif) = 0. If xi is not real then 
a -cif3 0 because ai and ,B are real sequences with ci O0 and j3#0. If n is odd, 
coi is real only in the case j = n and hence 

a - n# = X0, a - 8 = O, a = . 

If n is even, xi is real in the two cases j = n and j= n/2, leading to the conclusion 
that ca= 3 or ca= -1. 

Consider an infinite sequence cil, a12, 03, * -of elements of P, say 
co 

(8) ak = ajkX', k =1, 2, 3, * 
jiO 

DEFINITION. A sequence oil, a2, a13, as in (8) is said to be a sequence 
admitting addition if corresponding to any integer r ? 0 there is an integer N = N(r) 
such that for all n > N, ao=aln= a2n = .* = arn = O 
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If this condition is satisfied we also say that 2aj is an admissible sum, and 
we can write 

00 

D ai = ZSTX , 
j=1 

where for each integer r ? 0 the coefficient ST is the coefficient of Xr in the finite 
sum a1+a2+ +aN, i.e., 

Sr = arl+ ar2 + + arv. 

We note that s, is the coefficient of Xr in every finite sum oz1+az2+ * +az with 
n_N. 

LEMMA 7. Let aol, aZ2, a*3, be a sequence of elements of P admitting addition. 
Let /31, 32, /33, * * be a rearrangement of the ao's in the sense that given any j there 
exists a unique k such that aj = /3k. Then /,32, /3*, is also a sequence admitting 
addition, and 

al + !2 + a3 + * =/1 + /2 + f + 

Proof. Let r be any given nonnegative integer. For n sufficiently large the 
coefficient of 'X in a1 +a2 +a3 + * equals the coefficient of Xr in the finite sum 
al +a2+ ... +a,. Similarly for n sufficiently large the coefficient of Xr in 
31+/2+/3 + ... equals the coefficient of X' in f1+/2+ ... +/3n. And clearly 

al+a2+ ... +a, and /1+/2+ . .. +i3 have identical terms in Xr. 

Next we get a result analogous to Lemma 7 for multiplication. Consider an 
infinite sequence yi, 'Y2 'Y3.. of elements of P of the form 

00 

(9) Yk - cik Xi, k = 1 2, 3,*. 
j=1 

Note that the sums begin with j= 1. If this is a sequence admitting addition, 
then we say that the related sequence 

(10) I + 71X1 + Y2,I + 73, 

is a sequence admitting multiplication. Furthermore, we write 

co 00 

][ ( I + -Yk) = 
+ 

E qj Xi, 
kl1 jl1 

where q, is the coefficient of XT in any finite product fl[k (1 +'k) with n suffi- 
ciently large that Cjk =0 for 1 <j<? r if k > n. Then it is clear that we can state 
a result analogous to Lemma 7 as follows: 

LEMMA 7a. If (10) is a sequence admitting multiplication, so is any rearrange- 
ment 1 + &1, 1 + 82, 1 + 83, * * * of (10), and 
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1969] FORMAL POWER SERIES 877 

co 00 

II (1 + a*) = II (1 + h). 
k-1 k=l 

5. Formal derivatives. Given any a in P, say a = j O aj Xi, define the 
derivative D (a) and the scalar S(a) by 

00 

(11) D(a) = EjajXi', S(a) = aO. 
j=1 

Define D2(a) =D(D(a)), and in general for any positive integer n, the nth 
derivative is Dn(a). Taking D(ax) =a for convenience, we can now write a 
McLaurin series expansion. 

THEOREM 8. a = nZ0 (1/n!) S(Dn(a))*Xn. 

The proof of this is quite easy. 

THEOREM 9. If aS EP, 3 EEP then D (a +f3) = D (a) +D (Q3) and D (a 3) = aD (13) 
+3D(a), and D(an) = nan-ID (a) for any positive integer n. Also if ca-I exists then 
D(at1) = -_c-2D (a) and D (a-n) = _na-- 1D (a). 

Proof. The formula for D (a 13) can be established easily by comparing coeffi- 
cients of Xn. By using induction on n we get the formula for D (an). Next if we 
differentiate a a-1= 1 we get the formula for D(ac-1). Finally, a-n = (a1-)n can 
be used to write 

D(a-n) = D((a-1)n) = n(a-1)f-1D(c-1) = na-n-D(a). 

THEOREM 10. Let aEEP, so that S(a) = 1. For any rational number r, D(ao) 
- rar-1D (a). 

Proof. By Theorem 5 there is a unique meaning for a,'. If r = m/n where m 
and n are integers we can write 

D((a-r)n) = n(acr)n-1D(a%) D((ar)n) = D(alm) = man-lD(a) 

by Theorem 9. The result follows at once. 
A simple version of the binomial theorem can be easily obtained from 

Theorems 8 and 10, as follows: 

THEOREM 11. For any rational number r and any complex number k, 

(1 + kX)r = 1 + r(kX) + r(r- 1) (kX)2 + 
2! 

P f F1) (r- 2).. +(rkn+ ) = 

Proof. First note that D(1 +kX)" ==r(l +kX)r-1D(1 +kX) = rk(1 +kX)1'-, and 
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so by induction on n, 

Dn(1 + kX)r = r(r - 1)(r - 2) (r - n + 1)kn(1 + kX)?1t. 

Now (1 +kX)r-n is a unique element of P1 by Theorems 3 and 5, and so 
S(1 + k/) r-n = 1. It follows that 

S(Dn(I + kX)I) = r(r - 1)(r - 2) * (r - n + 1)kn. 

Now use Theorem 8 with a replaced by (1 +kX)r, and the result follows. 
The form of the binomial theorem just established is sufficient in most ap- 

plications, for example, to justify the argument given in Section 2. To see this, 
we replace equation (3) with this definition of a, 

00 

a = qXi) 
j=1 

where the qj have the same meaning as in Section 2. Then the analysis following 
equation (3) leads to a2 = a -X. From this we can write 4a2 - 4a + 1 = 1- 4X, or 

(1 - 2a)2 = ((1 -4X) 12)2 

By Theorem 6 it follows that 1- 2a = (1- 4X)1/2, and so by Theorem 11 we 
conclude that 

1 - 2q,X - 2q2X2 - 2q3X3 - 

1+ - (-4)X) + (3 
2 

(-4X<)2 + '(?-2 2 (4X) 
2 2!1 3 ! 

From the definition of equality in Section 3 we can now equate the coefficients 
of Xn to get equation (5). 

We want to get a more general form of the binomial theorem, namely the 
expansion of (1 +a)r where a EP0, so that S(a) = 0. To do this we define a formal 
logarithm. But first we establish one more result about derivatives. 

THEOREM 12. If a1+a2+a3+ is an admissible sum of elements of P in 
the sense of Section 4, then 

D(al + ae2 + aS + *aa)=D(ai1) + D(a2) + D(a3) +*a . 

Proof. For any nonnegative integer r the coefficient of XT in the infinite sum 
al1+a2+as3+ * * * equals the coefficient of XT in the finite sum a,+a2+ * * * +an 
provided n > N= N(r). Hence the coefficients of 'r-l are equal in the equation 
in Theorem 12. But this holds for all r, so the result follows. 

6. Logarithms and the binomial theorem. A formal logarithm is not defined 
for any element of P, but only for aeCP1, so that S(a) =1. For any aEGPI, say 
a = 1 +,B with j3EP0, define 

L(a) = L(1+i3) = 22 + I 3 - i4 + 1= (1) j++1i/j 
ji- 
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19691 FORMAL POWER SERIES 879 

noting that this is an admissible sum as in Section 4. Thus L is a formal logarith- 
mic function from P1 to Po. 

THEOREM 13. D(L(a)) =O'1D(a). 

Proof. With a = 1 +1 we use Theorem 12 to write 

D (L D (L(1 + )) [- 3 4 

= D(A) + D(- 1 2) + D(13#3) + D(- 434) + * 

= D(fl) - #D(fl) + 32D(Q) - f3D(03) + * - 

=D(fl) [1 - ' + ,B2 - #3 + . ] 

= D(8) * (1 + 1)-1 = D(a)* ccl 

because D(a) =D(3) by definition. 

THEOREM 14. If aCEfPP and 'yEPi then L-(cy) =L(a)+L('y). 

Proof. We use Theorems 13 and 9 to observe that 

D(L(a'y)) = (ay)-4D(ay) = (ay)-l{aD(y) + yD(a)J 
= &c'D(a) + y-'D(y) 
= D(L(a)) + D(L(y)) 
= D(LQ(a) + L(y)). 

Now L(xy) and L(a) +L(7) are elements in Po, and it is clear from the definition 
of a derivative that if 0,GPo and 02CPo and D(01) = D(02), then 01 =02 

THEOREM 15. For any rational number r, L(a,) = rL(a). 

Proof. By definition L(1) = 0. Then a *a' = 1 implies L(a) +L(ac-) =L(x a-') 
=L(1) =0 and so L(a-')= -L((a). For any integer n we have L(an) =nLQ(a) by 
induction. If r = m/n where m and n are integers we see that 

mL(a) = L(am) = L((ar)n) = nL(ar). 

THEOREM 16. L(a) = 0 if and only if a =1. Also if L(a) = L(O) then a =j. 

Proof. If L(a) =0 then D(L(a)) =D(O) =0 and so ao'D(a) =0. But a'-00 
and hence D (a) = 0 and a = 1. 

THEOREM 17. If r is rational, if 1 is an element of Po so that S( 3) = 0, then 

(12) (1 + fB)r 1 + r,8 + r(r 1) #2 +... 
2! 

r(r-1)(r-2) * * * (r-n +1) n 

Proof. For convenience we write 
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(r r(r-l)(r-2) ... (r-n + 1) 

Let y denote the right side of equation (12) so that 

D(y) = D(j3) j( >i 

(1+3)D&) = D(y3) >j i-1 + D(13) E (r) 

- D(3) zj (') '-r + D(f) E (ji-i1) 
jl 1 j=-21- 

D(3) r + D(3) (j 
+ 
(j) 

= D(l) r + D(O) 
j- 

r(j ) 

-rDQ3) 1 + _ _ =ryD(,8). 

Multiplying by y-'(l +3)-l we get Ty-D('y) = r(1 +3)-'D() = r(1 +3)-D(1 +O). 
But D(L('y)) =y-'DQ(y) and D(L((1+j3)r)) =D(rL(1+3))=r(1+3)-1D(1+3), 
and so D(L('y)) =D(L((1+f)-r)). Since L('y) and L(1+13)r are in Po it follows 
that L(y) =L((1+13)r), and so y= (1+1)r by Theorem 16. 

7. The exponential function. Let f3 be an element of Po, so that S( = 0. 
Then we define 

E(f) = 1 + + - + -o + F3 n 
2! 31 n=~on 

so that E is a function from Po to Pi. Since E(J3), as defined, is an admissible sum, 
we can apply Theorem 12 to get 

D(E(#)) = D() {1 +: + - 3! - } D)E 

THEOREM 18. If EQ(3) =E('y) then 3 ='y. 

Proof. We observe that D (E (3)) = D (E (Qy)), so that D (f) * E () = D (y) * E (y). 
But E(3) #0 so that E(3) and E(y) can be cancelled giving D f3) = D (y), and 
hence i ='y. 

THEOREM 19. If 13CPo then L(E(Q)) =f. If oaCPi then E(L(a)) =a. Thus L 
and E are inverse functions, L being one-to-one from Pi onto PO, and E one-to-one 
from Po onto P1. 
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Proof. By Theorem 13 we see that 

D(L(E(s3))) = {E(3)}-'.D(E(Q)) ={ E(fl)}-1.E(0).D(0) = D(f). 

It follows that L(E(3)) =f3. Next, given any a in Pi suppose that E(L(a)) =a,. 
Then L(E(L(a))) =L(a,) and so L(a) =L(a,). Hence a = a1 by Theorem 16. 

THEOREM 20. Given 0CEPo, yEzPo, then E(3+'y) =E(Q) E(,y). 

Proof. By Theorems 14 and 19 we see that 

L(EQ(3) * E(y)) = L(EQ()) + L(E(y)) = A + y. 

Taking the exponential function of each side, and using Theorem 19 again, we 
get the result. 

By Theorems 15 and 19 we see that arc=E(rL (a)) for any ac-Pi and any 
rational r. This equation we take as the definition of a r for any complex number 
r, so that such properties of exponents as a"r a8W = ar+8 follow at once for complex 
numbers r and s. Also by use of this definition we note that Theorem 10 can 
be extended to any complex number r; thus 

D(ar) = D(E(rL (a))) = E(rL (a)) D(rL (a)) = arra-clD((a) = ra r-lD(a). 

Also Theorem 15 extends to any complex r by use of Theorem 19. Finally, 
Theorem 17 holds for complex r; in fact the proof of this result needs no altera- 
tion for this generalization in view of the extended versions of Theorems 10 and 
15 just mentioned. 

8. An application to recurrence functions. For any given a, b, xo, xl define 
a sequence xo, X1, X2, X3, - * * by the recurrence relation xn+i=axn+bXn-i for 
n = 1, 2, 3, * * * . The Fibonacci sequence is the special case with a = b = xo = xi = 1. 
The problem is to determine xn explicitly in terms of a, b, xo, xi. If we define 
a=Xo+XiX+X21X2 + X3X3 + * * * we see that 

(13) a - aXa - bX2a = xo + (x1 - axo)X. 

If ki and k2 are the roots of k2-ak-b=O we see that (13) can be written as 

(14) a(l - k,X)(1 - k2X) = xo + (xi - axo)X. 

CASE 1. Suppose that k1 = k2. Then we see that 

(15) a = Txo + (xi - axo)X} (1 - k1X)-2. 

Now by Theorem 11 or Theorem 17 we have 
-2 ~~~~2 2 4 4 

(1-k1X) 1 + 2kiX + 3kX + 14kl+5kX +***, 

and so equating coefficients of XI in (15) we get 

x.A 
= xo(n + 1)kt + n(x1 - axo)k"1 or 

(16) - n 
Xn= nXlkl - (n - 1)xokl. 
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CASE 2. Suppose that k134k2. Multiplying the identity 

ki-k2 =ki(I k2X)- k2(1- kiX) 

by (1 - kX)-l (1 - k2X)-l we get 

(k1 - k)(1 - k,)'l- k2)= k1(l - ki)1- k2(1- k2- 
l 

Multiplying this into (14) we have 

(17) (k1 - k2)a = xo + (xi - axo)X {k1(l - ki)1- k2(1 - kX- 

Also we use kl(l-ki'X)1'=ki+k2lX+kl2+k4jX3 + . V Equat- 
ing coefficients of 'XI, in (1 7) we have 

(k1 - = X xo (k"+ - k`+ ') + (xi - axo) (kn -kn 

or 

(18) X= x0(kn+~1 kn1 + (xi - axo)(kun& - -n)/k k2). 

The results (16) and (18) are well known; an alternative derivation is given in 
[3, page 100]. An entirely different way of treating equation (13) is as follows. 
We can write 

(19) a = (1 - aX - bX 2)-l{Xo + (xi - axo)XI[ 

Now by Theorem 17 we have 

(1 - aX - b2-l 1 + (aX + WA) + (aX + bX2)2 + (aX + bA2)3 + 

The coefficient of Xn here is 

an + (f )an2b + (fl n2 a4b 2 + (f )an-61 + . 

Equating coefficients of 'Xn in (19) gives therefore 

j= -2 

n 

-j(I(n-1) 
/2] 

/n xo 
= 
(XO a?&2ibi + (xi axo) 

- -1)an-12ibi. 

Finally, let us return to the method used for deriving (16) and (18). This 
method can be used with recurrence relations of higher order. Consider for 
example any given real (or complex) numbers xop Xl, X2, a, b, c and a recurrence 
relation 

Xn2~ axn+l + bXn + CXn-1, n = 1, 2, 3, 

If we define a= xo+x1X+x2X'+x3V'+ we note that 

(20) a(l - aX - bX2 - CX3) = xo + (xi - axo)X + (X2 - ax, - bxo)>%2. 
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If the equation k3-ak2-bk-c=O has roots kl, k2, k3 say, then (13) can be re- 
written as 

(21) a(1 - k1X)(1 - k2X)(1 - k3X) = xo - (x - axo)X + (X2- ax1 - bxo)X2. 

There are now three cases depending on the nature of the roots ki, k2, k3: th ree 
equal roots, two equal roots, or distinct roots. The case of equal roots follows 
the pattern of equation (15), 

CZ = [xo + (x1 - axo)X + (X2 ax1 - bxo)X2] . (1 - kX)-3. 

In the other two cases it is a matter of partial fraction expansions, in the sense 
that constants ql, q2, q3, q4, q6, q6 can be found so that 

(1 - k,X)-2(1 - k2X)- = ql(l - kiX)-1 + q2(1- kiX)-2 + q3(1 - k2X), 

(1-A)-'(l - k2X)-(1 - k3X)-l = q4(1-kX)-?+qb(l-k2XA)-I+q6(1-k3\)-li 

in the case of two equal roots or the case of distinct roots, respectively. 
For example if a=6, b=-11, c=6 then we find that ki=1, k2=2, k3=3, 

q4=2, q5= -4, q6=9/2. Then (21) implies that 

a = [xo + (xi - 6xo)X + (X2- 6x, + JJx0)X2] 

* [(I - X)-1 - 4(1 - 2X)-1 + 9 (I 3-)-] 

Xn = X,(2 - 4-2n + -&3-3n) + (xi - 6xo)(2 - 4,2n-' + 9.3n-- ) 

+ (X2- 6x1 + 11xo)(I - 4.2 n-2 + 2.3n-2) 

9. An application to partitions. The notation p(n) represents the number of 
ways that a positive integer n can be written as a sum of positive integers. Two 
partitions are not different if they differ only in the order of their summands. As 
usual, we define p(O) = 1. 

Let aj denote 1 +Xi+X2i+X3i+ * for every positive integer j. Then 
ali, a2, a03 ., * is a sequence admitting multiplication in the sense of (10) in 
Section 4. By the standard argument, for example in [3, pp. 226, 227], we have 

00 00 

(22) o1 - a2 - a3 .- =-H ac p(k)xk. 
i=l_ I k=O 

But also we see that a,(1 -Xi) =1 so that aj (1-Xi)-', and 
00 00 

(23) HaI = 11(1 -Xi)-'. 
jl1 j=- 

Next let qe(n) denote the number of partitions of any positive integer n into 
an even number of distinct summands, and similarly let q0(n) be the number of 
partitions of n into an odd number of distinct summands. It is customary to 
take qe(O) =1 and q0(O) = 0. Then the coefficient of Xn in the expansion of the 
admissible product 
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(1-X)(1-X2)(1-X) *** = Il (1i-xi) 
i=1 

is seen to be qe(n) -qO(n) by a simple combinatorial argument. It follows that 
00 00 

(24) II (1 - X') = E {qe(n) - qO(n) xn. 
j=1 n=O 

By use of graphs of partitions it can be proved, cf. [3, pp. 224-226], that 
qe(n)-qO(n) = (-1)i if n is of the form (3j2+j)/2 or (3j2-j)/2 for some nonnega- 
tive integer j, and qe(n) -q?(n) = 0 otherwise. It is easy to prove that the sets of 
positive integers 

{(3j2 + j)/2; j = 1,2,3,* }, {(3j2 - j)/2; j = 1, 2, 3,* 

are distinct, and hence (24) can be written as 
00 00 

(25) 11 (1 - xi) = 1 + E (-l)i(X(3w2+i)/2 + X(3i-j)j2) 

= 1- X -X2 + XI + X7 X12 - X15 + 

This with (22) and (23) implies that 

{1 + E (-l)i(X(3i2+i)/2 + _(3j2_i) 12)} E p(k)x\k = 1 

(1X - X2 + X + X7_ X12 - X15 + )Ep(k)Xk =1. 

For any positive integer n, the coefficient of Xn on the left side of this equation is 
p(n)-p(n-1)-p(n-2)+p(n-5)+p(n-7)-p(n-12)-p(n-15)+ * 
Thus we have proved the following well-known result of Euler [3, p. 235]. 

THEOREM 21. For any positive integers n, 

p(n) =p(n - 1) + p(n - 2) - p(n - 5) - p(n - 7) + * * 
co 

= E (_-)i+l{p(n (3j2 
+ j)/2) + p(n - (3j2 - j)/2)1 

j=1 

with p(t) =0 if t<O, so that the sum is finite. 

It should be emphasized that the proof given here of Theorem 21 is not new. 
The proof above is simply the usual one formulated in terms of the "soft" analy- 
sis of formal power series. 

10. An application to the sum of divisors function. For any positive integer 
n let o-(n) denote the sum of the positive divisors of n; for example o(6) = 1+2 
+3+6. We establish a known recurrence relation [3, p. 236] for a(n), and again 
the positive integers of the form (3k2-k)/2 and (3k2+k)/2 play a role, namely, 
the positive integers 1, 2, 5, 7, 12, 15, 22, 26, 
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THEOREM 22. For any positive integer k, 

a (k) - a (k - 1) - cr(k - 2) + a (k - 5) + ar(k - 7)- 

F(-1)J1k if k = (3j2 + j)/2 or k = (3j2 - j)/2, 
O otherwise. 

Proof. Define f = I= (1 -Xi) so that L(3) = ,t L(1-Xi), 
k 

-D(L(/3)) = - 1 = , j(l - 

j=l 

k 

= {jX0-l + jX2i-1 + j\3l + jX4j--+ .. . 
j=l 

oo 

= ?f(n)n-1, 
n=1 

where f (n) is seen to be the sum of all positive divisors of n that do not exceed 
k. Thus we have f(n) =o (n) if n < k, and so we can write 

k oo 
(26) -f?r1DQ3) = 2 c(n)Xn-1 + ? f(n)Xn-1. 

n=1 n=k+l 

Now equation (24) can be written with a finite product 
k . o 

(27) = II (1- X) =E , q() - () I X 
j=1 n=O 

where q,(n) denotes the number of partitions of n into an even number of dis- 
tinct summands <k, and qk(n) denotes the number of partitions of n into an 
odd number of distinct summands ?<k. Define qk(O) =1 and q?(O) =0. If n < k 
we note that qk(n) =qe(n) and qk(n) =q0(n), so (27) can be written as 

k coo 

(28) E= ? qe(n) - qo(n) } X + E { qe(n) - qo(n)}X 
n=O n=k+l1 

We now equate the coefficients of X-k-1 in -D(O) and in the product 
3(-3-'D(f3)). From (28) it is clear that the coefficient of Xk-1 in -D(j3) is 

-k{qe(k) - q?(k)} = [-(-)Wk if k = (3j2 
+ 

j)/2 
O otherwise. 

From (28) and (26) the coefficient of X-'-1 in f(-f-1D(,8)) is 

o-(k){qe(O) - qO(O)} + oa(k - 1){qe(l) - qO(1)} + oa(k - 2){qe(2) - qO(2)} + 
= a s(k)o-ae(kh-e1)o-p(kr-2) + e(kd-5) + .(k-7) 

and so the theorem is proved. 
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11. Trigonometric functions and differential equations. We now return to 
the general theory of formal power series and make the definitions 

00 

sina { E(ix) - E(- ia) }/2i = E {1(-1)ka2k+l /(2k + 1)! 
k=0 

Cosa {E(ia) + E(-ia))}/2 = E {(_1)ka2k}/(2k)!, 
k=O 

where a is any element in Po. Thus sin a is in Po, but cos a is in P1, so we can 
define sec a = (cos a)-1 and tan a = (sin a) (cos a)-1. However, we cannot now 
define cosec a and cot a, but in the next section we extend the theory, to en- 
compass these two functions. All the rules of differentiation now apply, such 
as D (sin a) = (cos a)D (a). 

The standard theory of homogeneous linear differential equations with con- 
stant coefficients is valid. For example, in the second order case, let a and b be 
any complex numbers, and let r1 and r2 be the roots of x2+ax+b = 0. Then a 
solution for p in P of the equation D2(p) +aD(p) +bp =0 is 

p = clE(r,X) + c2E(r2X) 

with arbitrary constants c1 and c2. It is easy to prove that this is the general 
solution if r1 5 r2. If r1 = r2 the general solution is of course p = c1E(r1X) +c2XE(r1X). 

We now give a brief sketch of the use of a differential equation to solve a 
combinatorial problem, as in Andre [7, p. 172]. Our approach differs from that 
of Andre in that we treat the differential equation in a purely formal sense, 
which he did not. For n> 2 let bn be the number of permutations a,, a2, . . . 

an of 1, 2, * , n such that aj> aj-, if j is even, and aj < aj-, if j is odd. Call such 
a permutation an E-permutation. Similarly, say that a1, a2, . . ., an is an 
0-permutation of 1, 2, *. . , n if aj > aj-, if j is odd, and aj < aj-1 if j is even. Note 
that if a1, a2, * * *, an is an 0-permutation then n+1-ai, n+l-a2, * 

n+1-an is an E-permutation, and conversely. Thus there is a one-to-one corre- 
spondence between E-permutations and 0-permutations; there are bn of each 
type. Define bo= 1 and b1= 1. 

Next, consider the number of 0-permutations with a1= n. It is not difficult 
to see that there are bn-1 of these. Also, there are no E-permutations with a1 = n. 
Turning to permutations with a2 = n, there are no 0-permutations of this type. 
However, the number of E-permutations with a2 = n is (n - I)bn-2, or what is 
the same thing (n-1)bibn-2; the reason for this is that a1 can be any element 
among 1, 2, * * * , n-I and the rest can be set up as a3, a4, . . ., an in bn2 ways. 
A similar argument shows that there are no E-permutations with a3 = n, whereas 
the number of 0-permutations with a3 = n is (n)b2bn-3. Thus by considering all 
E-permutations and all 0-permutations with successively a, = n, then a2 =n, 

then a3=n, = ,* and finally an = n, we are led to the recurrence relation 
n-1 n~t-1 

2bn = ( 1 ) b n_j_ or 2ncn = C;Cn-j-1, 
j=o 1 j-o 
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where cn is defined as bn/n! for all nonnegative integers n. Taking a to be the 
formal power series 

co 

a = ECnXn 

n=O 

we can readily verify that the differential equation 2D(a) = a2+1 holds. Now 
it is easy to verify from the definitions of the formal trigonometric functions 
that sin2X+COS2X = 1, sec2X = 1 +tan 2X, D (tan X) = sec2 X, D (sec X) = sec X tan X. 
Thus the unique formal solution of the differential equation is a= tanX+secx. 
(Andre gives the solution of the differential equation as a =tan (X/2+7r/4) 
which has no meaning in our formal definition of the trigonometric functions. 
The usual formula for tan(a +f) in terms of tan a and tan A is valid, but tan 7r/4 
=1 cannot be established in the formal theory. In fact tan 7r/4 is not even 
defined because 7r/4 is not an element of Po, although it is an element of P.) 
Thus we have 

CZ = bnXn/n! = tan X + sec X. 

Now the power series for tan X has odd powers of X only, with coefficients 
closely connected with the Bernoulli numbers [8, p. 268]. Similarly the power 
series for sec X has even powers of X only, with coefficients related to the Euler 
numbers [8, p. 269]. Thus Andre was able to relate the combinatorial numbers 
bn to the Bernoulli numbers for odd n, and to the Euler numbers for even n. 
(A different approach to this problem has been given recently by R. C. Ent- 
ringer [9].) 

From our point of view in this paper, the important aspect of this is that 
Andre's conclusions can be drawn with only a formal use of calculus and dif- 
ferential equations and without any convergence questions in the use of a2, 
the square of a power series, in the differential equation. The series expansions 
for tan X and sec X come from those for sin X and cos X, and these are defined 
in terms of the exponential functions E(iX) and E(-iX). The formal structure 
carries the entire argument, with no need for the classical infinitesimal calculus. 
Of course, such relations as sin2 X+cos2 X= 1 have meaning only in terms of 
formal power series in this context and not in terms of the geometry of right- 
angled triangles. 

12. Extension to a field. Since the set of formal power series P is a commuta- 
tive integral domain, it can be imbedded in a field P* in the classical manner by 
use of pairs of elements, cf. [2, pp. 87-92]. This construction is very well 
known in the extension of the integers to the rational numbers. Thus P* is the 
field of all pairs (a, O) with aCP, fE3P and A0. Addition and multiplication 
are defined by 

(all, 01) + (a2, l2) = (alfl2 + a2f1, /012), 

(a1i 1) ) * (C2, I 2) = (a1la2, #13@2). 
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Two elements (a,, #I3) and (a2, 32) are said to be equal if and only if ai/2 =a2013 
If 3 = 1 we agree to write a for (ae, (a) (a, 1), so that P is a subset of P*. 

Similarly we agree to write 

(29) ajXi'X,l- as z ajXir, 
j=. j=o 

where r is a positive integer. We prove in Theorem 23 that every element of P 
can be written in this way, so that P* can be thought of as the class of Laurent 
power series expansions, with a finite number of negative exponents allowed. 

To do this we first define the degree of a for any a in P, aO 0. If a =2ajXi 
then the degree of ae, written deg(ae), is the subscript of the first nonzero coeffi- 
cient in the sequence of coefficients ao, a,, a2, * a . If a, and a2 are nonzero 
elements of P it follows that deg(ala2) = deg(al) +deg(a2). This definition is ex- 
tended toP*as follows: if (a,1)CeP*witha-oe #O tOhen deg(a, j) =deg(Q)-deg(3). 
Degree is well-defined, because if (al, t1) = (a2, 32) then a1/2 =a2f1 and so we have 

deg(al) + deg(l32) = deg(a2) + deg(Q,), 

deg(al) - deg(Q,) = deg(at2) - deg(Q2). 

Next for any (a, f3) in P* with a0O, let deg(a)=m, deg(3)=n so that 
deg (a, O) =m -n. Then we see that j =Xn3,1 where j1 has degree 0, so that f1 
has an inverse. It follows that (a, )=(a, 'Xnll) = (c43B1 Xn). Now ac-' has 
degree m, so it can be written in the form 

cali = ajX am 0 0. 
j=m 

Thus we have 
00 

(30) (a,,6) = EajX~n am. 0, 
j=m 

by virtue of (29). 

THEOREM 23. The representation (30) of any nonzero element (a, O) of P* ts 
unique. 

Proof. Suppose that (a, i3) can also be written as 

00 

(a,X :) = ~E CjX'n, Ch ? 0. 
j=h 

By the invariance of degree under different representations we see that m-n 
=h-n and m =h. Also we have 

(o, a = (n= (fE C2jx Xkn) 
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and so by the definition of equality in P*, 
00 00 

.E ajXi+n = ? cjxj+n. 
j=m j-m 

The theorem follows by the definition of equality in P. 
In the preceding section we saw that the trigonometric functions sin a, 

cos a, tan a, and sec a could be defined for any element a of P, but not cosec a 
and cot a. If a$O0 we can define the latter two functions from P to P*; thus 

cosec a = (1, sin a), cot a = (cos a, sin a). 

A simple calculation shows that 

cosec X = X-1 + (X/6) + (7X3/360) + 

Finally, we note that the theory of formal power series, developed here in 
analogy to power series in a single variable, can be extended in a similar way 
to the multiple variable case. 

Work supported by NSF Grant GP 6510. 
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